
Symbolic Analysis of Cryptographic Protocols
Models, Methods, and Soundness

PhD Thesis - Morten Dahl Jørgensen

Supervisor - Ivan Damg̊ard

March 2013

Department of Computer Science
Science and Technology

Aarhus University

Acknowledgements

First of all I would like to thank Ivan Damg̊ard for welcoming me, being an active advisor, and
always keeping his door open and taking the time to answer questions.

I would like to thank my hosts and co-authors through-out the years – Hans Hüttel, Graham
Steel, Ran Canetti, Stéphanie Delaune, Tomas Toft, Naoki Kobayashi, Yunde Sun, and Chao
Ning – for their hospitality, time, and collaboration, and the numerous people with whom I
have had many fruitful discussions.

Finally, a warm thank you to my friends and family, especially to my girlfriend and the
three from Vestergade, for their endless encouragement, support, and patience.

Morten Dahl Jørgensen
Aarhus, March 2013

i

Preface

This thesis is based upon two published papers and an unpublished technical report:

• Type-based Automated Verification of Authenticity in Asymmetric Cryptographic Protocols
was done primarily at Aalborg University in collaboration with Naoki Kobayashi, Yunde
Sun, and Hans Hüttel. It was published at The 9th International Symposium on Automated
Technology for Verification and Analysis 2011 (ATVA’11).

• Formal Analysis of Privacy for Anonymous Location Based Services was done at École
Normale Supérieure de Cachan in collaboration with Graham Steel and Stéphanie Delaune.
It was published at Theory of Security and Applications 2011 (TOSCA’11).

• Universally Composable Symbolic Analysis for Two-Party Protocols based on Homomorphic
Encryption was done at Aarhus University in collaboration with Ivan Damg̊ard. Several of
the initial ideas emerged from fruitful discussions with Ran Canetti while visiting Boston
University.

Two other papers were also published but have been omitted in the name of coherency:

• Formal Analysis of Privacy for Vehicular Mix-zones was done at École Normale Supérieure
de Cachan in collaboration with Graham Steel and Stéphanie Delaune. It was published
at The 15th European Symposium on Research in Computer Security 2010 (ESORICS’10).

• On Secure Two-party Integer Division was done at Aarhus University in collaboration
with Tomas Toft and Chao Ning. It was published at The 16th Conference on Financial
Cryptography and Data Security 2012 (FC’12).

iii

English Résumé

We present our work on using abstract models for formally analysing cryptographic protocols:

• First, we present an efficient method for verifying trace-based authenticity properties of
protocols using nonces, symmetric encryption, and asymmetric encryption. The method
is based on a type system of Gordon et al., which we modify to support fully-automated
type inference. Tests conducted via an implementation of our algorithm found it to be
very efficient.

• Second, we show how privacy may be captured in a symbolic model using an equivalence-
based property and give a formal definition. We formalise a concrete protocol by Blumberg
et al. using one-way functions and commitments for providing various location based
vehicle services, and report on our findings and experience of carrying out its analysis
using the ProVerif tool.

• Third, we make an abstract model of the powerful simulation-based Universally Compos-
able framework by Canetti for specifying and analysing protocols, and show that our model
is sound with respect to its standard computational interpretation. Our model supports
powerful primitives such as homomorphic encryption and non-interactive zero-knowledge
proofs, which we show may be used to implement several interesting two-party function-
alities. As a case study we use the ProVerif tool to analyse an oblivious transfer protocol
by Damg̊ard et al. under static corruption.

v

Dansk Resumé

Vi præsenterer vores arbejde vedrørende brugen af abstrakte modeller til formel analyse af
kryptografiske protokoller:

• Først præsenterer vi en effektiv metode til at verificere autentifikationsegenskaber for pro-
tokoller, der gør brug af symmetrisk og asymmetrisk kryptering. Metoden bygger p̊a et
typesystem af Gordon m.fl., som vi modificerer s̊aledes, at typeinferens kan lade sig gøre.
Testresultater fra en implementation indikerer dernæst, at vores algoritme er effektiv.

• Efterfølgende viser vi, hvordan anonymitet kan udtrykkes symbolskt ved hjælp af en æk-
vivalens. Vi formaliserer en konkret protokol af Blumberg m.fl., der via en-vejs-funktioner
og commitment schemes understøtter lokationsbaseret tjenester for køretøjer. Vi doku-
menterer resultatet af dens analyse samt erfaringer fra brugen af ProVerif-værktøjet.

• Til sidst giver vi en abstrakt model af Canettis simulationsbaseret Universally Composable
platform til specifikation og analyse af protokoller og viser sundhed i forhold til standardfor-
tolkningen. Vores model understøtter homomorfisk kryptering og zero-knowledge-beviser,
der tilsammen tillader os at implementere flere interessante toparts-funktionaliteter. Vi
tester anvendeligheden af modellen ved at bruge ProVerif-værktøjet til at analysere en
oblivious transfer-protokol af Damg̊ard m.fl. under statisk korruption.

vii

Table of Contents

Acknowledgements i

Preface iii

English Résumé v

Dansk Resumé vii

Table of Contents viii

1 Introduction 1
1.1 Symbolic Models . 1
1.2 Automated Analysis of Authenticity . 3
1.3 Capturing and Analysing Privacy . 5
1.4 Computational Sound Composable Analysis . 6
1.5 Bibliography . 9

2 Type-Based Verification of Authenticity 11
2.1 Introduction . 11
2.2 Processes . 12
2.3 Type System . 14
2.4 Type Inference . 21
2.5 Implementation and Experiments . 22
2.6 Extensions . 22
2.7 Related Work . 23
2.8 Relation to Gordon-Jeffrey Type System . 24
2.9 Proofs of Lemmas . 30
2.10 Bibliography . 39

3 Privacy for Anonymous Location Based Services 41
3.1 Introduction . 41
3.2 The VPriv Scheme . 42
3.3 Formal Model . 44
3.4 Privacy for Interactive Zero-Knowledge Protocols 46
3.5 Privacy Analysis . 48
3.6 Conclusion . 51
3.7 Bibliography . 51

4 Universally Composable Symbolic Analysis 53
4.1 Introduction . 53

viii

TABLE OF CONTENTS ix

4.2 Protocol Model . 60
4.3 Preliminaries . 89
4.4 Real-world Interpretation . 93
4.5 Intermediate Interpretation . 102
4.6 Symbolic Model and Interpretation . 120
4.7 Analysis of OT Protocol in ProVerif . 132
4.8 Remarks . 143
4.9 Bibliography . 145

Chapter 1

Introduction

A cryptographic protocol describes how a set of players with access to cryptographic primitives
should behave in order to collaboratively perform a certain computation. In this thesis we focus
on how such protocols may be analysed, that is, how we may gain confidence that they behave
as intended even under the attack of an arbitrary adversary trying to break them.

As a first step we need to define a protocol model in which we can capture the players,
their primitives, and adversaries. Since protocols are executed by computers it may be argued
that the computational models are the most realistic and give the highest level of certainty.
However, the fact that these models include many technical details may complicate matters to
the point where tool supported analysis becomes infeasible, and where even manual analysis is
done somewhat informally and hence prone to error.

One approach for dealing with the above complexity issue is to instead consider abstract
models ignoring certain details that are not deemed important for the analysis. In this thesis
we focus on a particular kind of abstract models, namely those allowing for a symbolical anal-
ysis, and argue that they may yield a good balance between ease of use and realistic security
guarantees, by not only opening up for fully-automated formal analysis, but also being powerful
enough to express advanced protocols and their security properties. Moreover, we also show
how they can be proved sound with respect to well-established computational models and as a
result provide a high degree of certainty.

In this chapter we first sketch the particular kind of symbolic models we will be using1

and then we outline the content of the rest of the thesis: in Section 1.2 (based on Chapter 2)
we present an efficient method for automating the analysis of trace-based authenticity proper-
ties using type systems; in Section 1.3 (based on Chapter 3) we perform a concrete analysis
of a protocol, which includes investigating how the more complex equivalence-based security
properties such as privacy may be captured symbolically, and how current tools can be used to
automate their verification; finally, in Section 1.4 (based on Chapter 4) we give a computational
sound model for analysing advanced primitives and equivalence-based security properties in the
simulation-based paradigm, and conduct a concrete analysis as a case study in the expressive
power of the model and to what extend it allows for automation.

Related work is given in each chapter with respect to its aspect of symbolic analysis.

1.1 Symbolic Models

The symbolic models used here differ from the computational models by abstracting away things
such as the security parameter and the negligible probability with which the adversary may

1Several symbolic models exist in the literature, including the quintessential Dolev-Yao [DY83] and BAN
logic [BAN90]. We have focused on the process calculi here due to their wide-spread use and tool support.

1

2 CHAPTER 1. INTRODUCTION

break a protocol by for instance guessing a secret key: with a notion of adversarial knowledge
and unguessable atomic symbols, dubbed names, is it possible to specify logical rules saying
that the only manipulation an adversary can do to a ciphertext is to compare it to other
messages and obtain the plaintext if he knows the (unguessable) name corresponding to the
decryption key. On the other hand, in the computational models no prior information may
still allow the adversary to obtain the length of an encrypted plaintext, knowing most of a
decryption key may allow him to guess the rest, and knowing the decryption key may reveal
the randomness used for a ciphertext. The obvious advantage of the computational models is
that they have a tight connection with the real execution of a protocol and hence give a high
degree of accuracy, including the certainty of a security analysis. However, it comes with the
price that tool support is sparse and both manual and automated analysis quickly becomes an
expert task or done informally.

The Spi-Calculus

Milner et al. [MPW92, Mil99] introduced the π-calculus that uses processes to model communi-
cating systems passing around atomic data packages. It has been a highly successful model for
various purposes (see for example [VM94, PT97, PW05, PC07]), including the idea of analysing
cryptographic protocols by for instance comparing a protocol to its ideal behaviour (or specifi-
cation) through an equivalence relation between the two systems. However, while it is capable
of expressing cryptographic protocols, it has to do so through an encoding that overcomplicates
matters and shields away many of the assumptions put on the primitives.

As an attempt to remedy this, Abad́ı and Gordon introduced the spi-calculus [AG99] as
an extension of the π-calculus with explicit terms for modelling cryptographic messages such
as ciphertexts, and encryption and decryption processes that explicit model the behaviour of
these procedures by for instance making it clear when decryption succeeds and when it fails.
They also developed several analysis methods for their model, including carrying over the idea
of specifying security properties such as secrecy and authenticity through equivalences. There
have since been an array of variants of the calculus extending it with other primitives, as well
as work on methods and tools, not least in the form of type systems for trace-based security
properties [Aba99, GJ04, HJ04, FGM07]. In Section 1.2 we sketch a spi-calculus with symmetric
and asymmetric encryption, and a type system for proving authenticity properties.

The Applied-Pi Calculus

The ad-hoc development of variants of the spi-calculus has its obvious limitation in that each
variant must give an operational semantics, or even provide fundamental theorems2. In an effort
to unify the many spi-calculi, Abad́ı and Fournet introduced the applied-pi-calculus [AF01]
that is parameterised by term constructors and an equivalence theory giving the semantics for
these. They give a general semantics as well as observational equivalence and its characterising
bisimularity. This calculus has seen wide-spread acceptance in recent years, due not least
to its ability to model analyse complex systems such electronic voting schemes [DKR09] and
advanced primitives such as zero-knowledge proofs [BMU08], but also to the existence of tool
support such as ProVerif [BACS13] that may handle both trace-based and equivalence-based
security properties. In Section 1.3 we instantiate the applied-pi calculus with term constructors
for one-way functions and commitments, and in Section 1.4 with term constructors for group
arithmetic, commitment, homomorphic encryption, and non-interactive zero-knowledge proofs.

2For instance, when a calculus is analysed using equivalence-based security properties one might be interested
in providing results making observational equivalence, which quantifies over all contexts, easier to analyse; this
is often done via the notion of bisimilarity which removes quantification in exchange for step-wise equivalence.

1.2. AUTOMATED ANALYSIS OF AUTHENTICITY 3

1.2 Automated Analysis of Authenticity

In Chapter 2 we present our work on automating the analysis of trace-based authenticity prop-
erties in symbolic models. We use a variant of the spi-calculus with symmetric and asymmetric
encryption as our protocol model and for embedding security properties. By using a type sys-
tem to prove that the properties are satisfied we may obtain a highly efficient and automated
way of proving authenticity through a type inference algorithm.

Symbolic analysis using type systems has been an active area of research and by now in-
cludes type systems for several trace-based security properties. The typical advantages are that
protocols can be verified in a modular manner, and that an explicit and easily verifiable proof
is provided in the form of the types. Furthermore, it is typically relatively easy to extend the
approach to verify actual source code instead of models. Their disadvantages however, include
that users must provide complex type annotations that require expertise in both security proto-
cols and type theories; by giving a type inference algorithm we remove this task and automate
the use of type systems.

Protocol Model

The messages, ranged over by M , are given by the terms inductively defined by3:

x
∣∣ pair(M1,M2)

∣∣ senc(M,k)
∣∣ aenc(M,k)

where x, k are names, pair(M1,M2) is a concatenation of M1 and M2, and senc(M,k) and
aenc(M,k) represents the ciphertext4 obtained by encrypting M with respectively symmetric
and asymmetric key k. For asymmetric encryption we do not distinguish between encryption
and signing, hence aenc(M,k) denotes an encryption if k is a public key and a signing if k
is a private key. Protocols are expressed as processes, ranged over by P , that allows for in-
put/output, nonce generation and equality checking, symmetric and asymmetric key generation,
and message manipulation such as encryption and decryption:

nil
∣∣ out[c,M]

∣∣ in[c, x];P
∣∣ (P1 || P2)

∣∣ !P
∣∣ new x;P

∣∣ news x;P
∣∣ newa x, y;P∣∣ check M1 is M2;P

∣∣ split M is pair(x, y);P
∣∣ match M1 is pair(M2, y);P∣∣ decrypt M is senc(x, k);P

∣∣ decrypt M is aenc(x, k);P

where, as a few examples: process nil does nothing; process out[c,M] sends M over name c,
and in[c, x];P waits for some message M on name c and then behaves as P with M substituted
for x; process P1 || P2 executes P1 and P2 in parallel, and !P executes infinitely many copies
of P in parallel; process new x;P generates a fresh ordinary name (such as atomic messages
and nonces), news x;P generates a fresh symmetric key, and newa x, y;P generates a fresh
asymmetric key pair.

Security Properties

Authenticity properties are modelled through correspondence assertions [WL93], and expressed
directly in the calculus by adding two processes:

P ::= . . .
∣∣ begin M ;P

∣∣ end M

3For consistency with the rest of the chapter we use a slightly different syntax here than in Chapter 2.
4Note that we do not model the randomness that may be used when forming ciphertexts in the real world.

This is justified by the fact that if a plaintext contains at least one nonce (modelled by the unguessable names)
then the entire plaintext is unguessable.

4 CHAPTER 1. INTRODUCTION

that do not change the operation semantics but simply raises events: process begin M ;P raise
a begin event for M and then behaves like P , while end M just raises an event event for M .

We intuitively call a process safe (with respect to its embedded correspondence assertions)
if for each end-event occurring, a corresponding begin-event has already occurred, and robustly
safe if a process is safe in the presence of arbitrary attackers representable as processes in our
calculus. As in most verification methods we aim at proving robust safety automatically.

To formalise the safety notions we give an operational semantics via runtime states, where
the special runtime state Error is entered when the correspondence assertions have been vio-
lated. We say that a process O is an adversary (also called opponent) if it contains no begin,
end, nor check operations. Using the operational semantics, robust safety is defined as follows:

Definition 1.2.1 (Safety and Robust Safety). A process P is safe if there is no reduction from
its initial state to Error. A process P is robustly safe if P || O is safe for every adversary O.

Type System

We next give a type system as a proof technique for proving that well-typed processes are
robustly safe. This allows us to reduce protocol verification to type checking, and in turn to
automate verification via type inference. We use the notion of capabilities in order to statically
guarantee that end-events can be raised only after the corresponding begin-events. A capability
ϕ is a multiset of atomic capabilities of the form end(M) expressing a permission to raise an
end event.

The robust safety of processes is guaranteed by enforcing the following conditions on capa-
bilities: (i) to raise an end M event, a process must possess and consume an atomic end(M)
capability; and (ii) an atomic end(M) capability is generated only by raising a begin M event.
These conditions can be statically enforced by using a type judgment of the form Γ;ϕ ` P ,
which means that P can be safely executed under the type environment Γ and the capabilities
described by ϕ. For example, for Γ = x : T for some type T , judgment Γ; {end(x)} ` end x
is valid but Γ; ∅ ` end x is not. This can be locally enforced by the following typing rules for
begin and end processes:

Γ;ϕ+ {end(M)} ` P
Γ;ϕ ` begin M ;P Γ;ϕ+ {end(M)} ` end M

where the left rule for begin makes the new capability end(M) available after the begin-event,
and the right rule for end ensures that the capability is available.

The main difficulty lies in how to pass capabilities between processes. We do this by at-
taching capabilities to nonce names, and introduce types of the form N(ϕ1, ϕ2) which describes
names carrying an obligation ϕ1 that must be satisfied, and a capability ϕ2 can may be used.
This is similar to what is done in [GJ04], however our uniform treatment not only allows us
to reduce type inference to a problem of solving constraints on capabilities and obligations,
but also allows us to express a wider range of protocols, such as cryptographic protocols with
several players. Formally, for Un

.
= N(∅, ∅) we obtain the following result for our type system:

Theorem 1.2.2 (Soundness). Let P be any process with free names x1, . . . , xn. If judgment
x1 : Un, . . . , xn : Un; ∅ ` P is valid in the type system then P is robustly safe.

Type Inference

The final step of our approach is to automate the process of proving type judgments. In other
words, given as input a process P with free names x1, . . . , xn, we want to not only decide if
a proof tree for judgment x1 : Un, . . . , xn : Un; ∅ ` P exists, but also explicitly construct it.

1.3. CAPTURING AND ANALYSING PRIVACY 5

Our algorithm is an extension of [KK09] to our more powerful type system: after determining
the basic shape of types it generates a set of constraints on the capabilities that can then be
reduced to linear programming.

1.3 Capturing and Analysing Privacy

In Chapter 3 we perform a concrete symbolic analysis of the VPriv scheme of Blumberg et
al. [BBP09]. But besides expressing and analysing the protocol formally, we also investigate
how privacy may be captured in the symbolic model; in light of the previous subsection we
here consider a equivalence-based security property that is not determined by the behaviour of
a single process but instead as a relationship between two processes. This makes the property
harder to check, with the consequence that focus here is moved from constructing efficient
fully-automated methods, to the question of how to define properties such as privacy, how to
do so in a way suitable for symbolic models, and how to work with them in current tools.

The VPriv Scheme

The VPriv scheme offers a variety of location-based vehicular services such as “pay-as-you-go”
insurance and electronic toll collection. The participants are a single service provider and a set
of vehicles, and the goal of the scheme is to both protect the privacy of drivers whilst ensuring
that they cannot cheat the service provider by, for instance, paying a lower price.

We assume that time is split into periods, say of length one month. The following three
phases are then executed in order by each vehicle during each period. At the start of a period
(registration phase), the vehicle generates fresh random tags for the period and registers com-
mitments to hashed versions of these with the service provider. Then (driving phase), whenever
the vehicle must emit a message containing an identifier during the period it will choose a new
tag from its set of fresh tags. The tags are emitted in clear and the service provider records all
tags v emitted by all vehicles together with the emission location l and a timestamp t, building
a database containing a mixture of tuples (v, t, l). Finally, at the end of a period (reconciliation
phase), each vehicle initiates a secure function evaluation protocol with the service provider in
order to compute and settle the payable debts.

The informal privacy definition stated in [BBP09] asks that the privacy guarantees from the
system are the same as those of a system in which the server, instead of storing tuples (v, t, l),
stores only tag-free path points (t, l). In other words, from the server’s point of view, the tags
might just as well be uncorrelated and random. This definition accounts for the fact that some
privacy leaks are unavoidable and should not be blamed on the system. For instance, if one
somehow learns that only a single vehicle was on a certain road at a particular time, then that
vehicle’s tags can of course be linked to the tags emitted along the road at that time.

Protocol Model

To symbolically model the protocol we instantiate the applied-pi-calculus with term constructor
f(x) to model the one-way function and commit(x, ck) to model commitments. We do not
give a way to invert term f(x) to obtain x, but we have term constructor open that by rule

open(commit(x, ck), ck) = x

intuitively allows one to open (invert) a commitment if the correct key ck is known. Using this
model we may give processes for all honest parties involved, in particular the vehicles and the
service provider.

6 CHAPTER 1. INTRODUCTION

Definition of Privacy

Intuitively, our definition of privacy says that the service provider is unable to determine which
route a vehicle took. For simplicity we assume that the vehicle has a choice of two routes,
route left or routeright , and the property hence becomes whether or not the process corresponding
to the vehicle taking route left is indistinguishability from the same process taking routeright

instead. This equivalence-based property seems somewhat natural, while on the other hand it
is less clear how to capture this strong notion of privacy as a trace-based property as we did
for authenticity above (which was a question of a single process reaching a bad state).

As done in previous symbolic modelling of similar properties, one might a priori be tempted
to use observational equivalence as the notion of indistinguishability. Yet as it happens, this
notion turns out to be too strong for in our analysis of the VPriv scheme, and as a result we
instead rely on trace equivalence. Formally, let a process VA be given that models the behaviour
of vehicle A in a scheme such as the VPriv scheme. For simplicity we assume that it emits a
single tag along its route. However, to account for the fact that it is trivial to deduce where the
vehicle went if it is the only one, we also assume a process V dri

B that emits a tag at the route
not visited by vehicle A as a “counter-weight” yet does otherwise not interact with the service
provider; in the case of the VPriv scheme it hence only performs the driving phase. We then
say that a scheme ensures privacy if the following trace equivalence holds:

CT
[
VA(route left) | V dri

B (routeright)
]

∼t
CT
[
VA(routeright) | V dri

B (route left)
]

where CT is an evaluation context modelling additional assumptions that may have to be
made for the property to hold, such as the server being semi-honest (curious but following the
protocol), or the existence of a trusted third party helping vehicles perform sanity checks on
the list of tags received from the server during the reconciliation phase.

Evaluation

Through our analysis using the ProVerif tool we identity specific circumstances in which privacy
can be violated in the VPriv scheme, including cases where the vehicles fail to perform sanity
checks on the list received from the server. Based on these findings we suggest fixes that then
allow us to prove privacy.

The work also presents a concrete situation in which observational equivalence is too strong
and trace equivalence must be used instead. This is unfortunate not only because tool support
exists for observational equivalence, but also because it is a congruence and hence useful for
compositional analysis. Intuitively, the problem is that step-wise simulation is required by ob-
servational equivalence whereas trace equivalence allows us to simulate only after the execution
is complete. This problem is well-known in the computational setting and hints that if we want
to use a step-wise equivalence in the symbolic setting then one solution might be to adapt some
of the tricks use there. This is made clear in our following work where extraction trapdoors play
an important role.

1.4 Computational Sound Composable Analysis

In Chapter 4 we turn to another approach for specifying security properties, namely the
simulation-based paradigm of the computational Universally Composable (UC) framework by
Canetti [Can01]. Here, ideal functionalities expressible within our protocol model are used
to specify the expected behaviour of protocols, with the consequence that the security prop-
erties we consider are not only not a priorly fixed as they were above, we may also capture

1.4. COMPUTATIONAL SOUND COMPOSABLE ANALYSIS 7

requirements which it is less clear how to do using the previous approaches. We consider more
advanced protocols and primitives as well, yet show through a case study that it is still possible
to benefit from tools support. Finally, we address the question of realism of our symbolic model
by providing a computational soundness result.

We focus on two-party function evaluation protocols and the primitives used by many of
these, namely homomorphic public-key encryption, commitments, and certain zero-knowledge
proofs. We consider an active adversary that may corrupt one of the players initially.

Protocol Model

Since we need to relate a symbolic and a computational model for the soundness result, we
introduce a simple high-level programming language for specifying a system of players, ideal
functionalities, and simulators (see below), and provide compilations to both models: for the
symbolic model we produce a set of processes in an instantiation of the applied-pi-calculus, and
for the computational model a set of ITMs fitting with the UC framework.

The language allows an entity to use input, output, conditionals, and invocation of oper-
ations; which operations are available depends on the kind of the entity and the corruption
scenario. Ideal functionalities, for a start, may use operations:

isValue(x)→ b, eqValue(v1, v2)→ b, inTypeU (v)→ b, inTypeT (v)→ b, pevalf (v1, v2, v3, v4)→ v,

isConst(x)→ b, eqConstc(v)→ b, isPair(x)→ b, pair(x1, x2)→ x, first(x)→ x1, second(x)→ x2

for processing values, constants, and pairings of these. Players may additionally use:

isComPack(x)→ b, isEncPack(x)→ b, isEvalPack(x)→ b, decryptdk(c)→ v,

commitU,ck,crs(v, r)→ d, encryptT,ek,crs(v, r)→ c, evale,ek,ck,crs(c1, c2, v1, r1, v2, r2)→ c,

verComPackU,ck,crs(d)→ b, verEncPackT,ek,crs(c)→ b, verEvalPacke,ek,ck,crs(c, c1, c2, [d1, d2])→ b

to generate commitments and encryptions, decrypt ciphertexts under their own encryption key,
and verify proofs from the other player: when using operations commitU and encryptT a non-
interactive zero-knowledge proof is also generated, proving that the plaintext is in set T and
U , respectively, and when using operation evale a proof that the ciphertext c was formed as the
result of an homomorphic evaluation of expression e on the inputs. Finally, again in addition
to the plain operations above, a simulator may also use operations:

isComPack(x)→ b, isEncPack(x)→ b, isEvalPack(x)→ b,

simcommitU,ck,simtd(v, r)→ d, simencryptT,ek,simtd(v, r)→ c,

simevale,ek,ck,simtd(c1, c2, v1, r1, v2, r2)→ c, simevale,ek,ck,simtd(v, c1, c2, d1, d2)→ c

to simulate the behaviour of an honest player, and operations:

extractComextd(d)→ v, extractEncextd(c)→ v, extractEval1,extd(c)→ v, extractEval2,extd(c)→ v

to extract values from the commitments and encryptions of a corrupt player.
As the simulation-based paradigm is fundamentally based on indistinguishability, we also

need a notion of equivalence of systems in both models, namely the usual computational notion
for all polynomial time adversaries in the computational model, and observational equivalence
in the symbolic model.

Security Properties

In this work, the security of a protocol φ is defined relative to its expected behaviour in the
form for an ideal functionality F . More specifically, we say that φ is secure with respect to

8 CHAPTER 1. INTRODUCTION

F if no adversary can tell the difference between interacting with φ and interacting with F
running together with some simulator Sim. We also say that the protocol realises the ideal
functionality when we do not care about the simulator beyond the fact that it exists.

In light of the our previous work above, specifying the security requirements through ideal
functionalities allows us to naturally capture the security guarantees under corruption of several
protocols. For instance, while the requirements for an oblivious transfer protocol have a natural
characterisation as an ideal functionality, it is less clear how to capture these using either of
the two previous approaches.

Compositional Analysis

Another benefit of adapting the paradigms of the UC framework is that we may decompose a
protocol into sub-protocols that are analysed independently. This reduces the complexity of
the analysis and aids both manual and automated efforts. More specifically, a protocol Φ may
be analysed with respect to ideal functionality F as follows:

1. decompose Φ into sub-protocols Φ1, . . . ,Φn and protocol φ using these, i.e. Φ = φΦ1,...,Φn

2. formulate ideal functionalities F1, . . . ,Fn and show that Φi realises Fi
3. show that φF1,...,Fn , i.e. the protocol using Fi instead of Φi, realises F
4. use a general composition result to conclude that Φ also realises F

where the analysis of Φ is broken into several analyses that may be done independently and
in different models, i.e. in our symbolic model or directly in the computational model: since a
prerequisite for doing an analysis in our model is that the (sub-)protocol, its ideal functionalities,
and the corresponding simulator are expressible in our high-level language, decomposition may
in some cases allow one to remove the parts of a protocol that our language cannot handle and
then simply do them by hand.

In terms of reducing the complexity of an analysis, the point is that an ideal functionality
is often simpler than the protocol realising it: intuitively, the protocol is split into the ideal
functionality containing the core behaviour, and the simulator containing the unimportant
“fluff” caused by e.g. having to use cryptographic primitives that in a sense may be cut away.

Computational Soundness

Our aim is to show that if we are given a proof in the symbolic model that a protocol φ realises
an ideal functionality F then it follows that φ also realises F in the computational model. We
actually show something slightly stronger, namely that (for our protocol class) observational
equivalence in the symbolic model implies indistinguishability in the computational model.

As a first step we introduce a third intermediate model, which also produces a set of ITMs
fitting into the computational UC framework, but which use a global ideal “crypto-box” that
receives all calls to cryptographic operations and returns handles to objects such as encrypted
plaintexts while storing these plaintexts in its restricted memory. Players then send such handles
instead of actual ciphertexts and commitments, and the adversary is given a restricted interface
to the memory through which he is effectively forced to launch his attack.

We then prove two soundness theorems stating that observational equivalence between two
systems in the symbolic model implies computational indistinguishability of the two systems
in the intermediate model, and computational indistinguishability in the intermediate model
implies computational indistinguishability in the computational model.

With this result we then arrive at the following: to prove usual UC security of a protocol
in our class it is hence sufficient to show observational equivalence of the compiled processes in

1.5. BIBLIOGRAPHY 9

the symbolic model5, which may (in part) be done using automated tools.

1.4.1 Case Studies

To investigate the expressibility of the approach and our high-level programming language, we
show that several interesting protocols, including coin-flipping and multiplication-trip genera-
tion, may be captured. As a case study we furthermore analyse an oblivious transfer protocol
and show how the ProVerif tool may be used to analyse and prove it secure.

1.5 Bibliography

[Aba99] Mart́ın Abadi. Secrecy by typing in security protocols. Journal of the ACM,
46(5):749–786, 1999.

[AF01] Mart́ın Abadi and Cédric Fournet. Mobile values, new names, and secure com-
munication. In Proceedings of the 28th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’01, pages 104–115, New York, NY,
USA, 2001. ACM.

[AG99] Mart́ın Abadi and Andrew D. Gordon. A Calculus for Cryptographic Protocols:
The Spi Calculus. Information and Computation, 148(1):1–70, January 1999.

[BACS13] Bruno Blanchet, Xavier Allamigeon, Vincent Cheval, and Ben Smyth. Proverif:
Cryptographic protocol verifier in the formal model. http://prosecco.gforge.

inria.fr/personal/bblanche/proverif/, 2013.

[BAN90] Michael Burrows, Mart́ın Abadi, and Roger Needham. A logic of authentication.
ACM Transactions On Computer Systems, 8:18–36, 1990.

[BBP09] Andrew J. Blumberg, Hari Balakrishnan, and Raluca Popa. VPriv: Protecting pri-
vacy in location-based vehicular services. In Proc. 18th Usenix Security Symposium,
2009.

[BMU08] Michael Backes, Matteo Maffei, and Dominique Unruh. Zero-knowledge in the ap-
plied pi-calculus and automated verification of the direct anonymous attestation
protocol. In IEEE Symposium on Security and Privacy, pages 202–215, 2008.

[Can01] Ran Canetti. Universally composable security: a new paradigm for cryptographic
protocols. In Proceedings of 42nd IEEE Symposium on Foundations of Computer
Science (FOCS ’01), pages 136–145, 2001.

[DKR09] Stéphanie Delaune, Steve Kremer, and Mark D. Ryan. Verifying privacy-type prop-
erties of electronic voting protocols. Journal of Computer Security, 17(4):435–487,
July 2009.

[DY83] Danny Dolev and Andrew C. Yao. On the security of public key protocols. IEEE
Transactions on Information Theory, 29(2):198–208, 1983.

[FGM07] Cédric Fournet, Andrew D. Gordon, and Sergio Maffeis. A type discipline for au-
thorization policies. ACM Transactions on Programming Languages and Systems,
29(5), 2007.

5Suitable ideal functionalities and simulators must also be constructed as part of the analysis. We do not
deal with automating this, sometimes straight-forward, task here.

http://prosecco.gforge.inria.fr/personal/bblanche/proverif/
http://prosecco.gforge.inria.fr/personal/bblanche/proverif/

10 CHAPTER 1. INTRODUCTION

[GJ04] Andrew D. Gordon and Alan Jeffrey. Types and effects for asymmetric cryptographic
protocols. Journal of Computer Security, 12(3-4):435–483, 2004.

[HJ04] Christian Haack and Alan Jeffrey. Cryptyc. http://www.cryptyc.org/, 2004.

[KK09] Daisuke Kikuchi and Naoki Kobayashi. Type-based automated verification of au-
thenticity in cryptographic protocols. In Proceedings of ESOP 2009, volume 5502,
pages 222–236, 2009.

[Mil99] Robin Milner. Communicating and Mobile Systems - The Pi Calculus. Cambridge
University Press, 1999.

[MPW92] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes,
parts i and ii. Information and Computation, 100(1):1–40 and 41–77, 1992.

[PC07] Andrew Phillips and Luca Cardelli. Efficient, correct simulation of biological pro-
cesses in the stochastic pi-calculus. In Computational Methods in Systems Biology,
volume 4695 of Lecture Notes in Computer Science, pages 184–199. Springer Berlin
Heidelberg, 2007.

[PT97] Benjamin C. Pierce and David N. Turner. Pict: A programming language based
on the pi-calculus. In Proof, Language and Interaction: Essays in Honour of Robin
Milner, pages 455–494. MIT Press, 1997.

[PW05] Frank Puhlmann and Mathias Weske. Using the π-calculus for formalizing work-
flow patterns. In Business Process Management, volume 3649 of Lecture Notes in
Computer Science, pages 153–168. Springer Berlin Heidelberg, 2005.

[VM94] Björn Victor and Faron Moller. The Mobility Workbench - a tool for the π-calculus.
In CAV’94: Computer Aided Verification, volume 818 of Lecture Notes in Computer
Science, pages 428–440. Springer-Verlag, 1994.

[WL93] Thomas Y.C. Woo and Simon S. Lam. A semantic model for authentication pro-
tocols. In RSP: IEEE Computer Society Symposium on Research in Security and
Privacy, pages 178–193, 1993.

http://www.cryptyc.org/

Chapter 2

Type-Based Verification of Authenticity

Gordon and Jeffrey developed a type system for verification of asymmetric and symmetric
cryptographic protocols. We propose a modified version of their type system and develop a
type inference algorithm for it, so that protocols can be verified automatically as they are,
without any type annotations or explicit type casts. We have implemented a protocol verifier
SpiCA2 based on the algorithm, and confirmed its effectiveness.

2.1 Introduction

Security protocols play a crucial role in today’s Internet technologies including electronic
commerce and voting. Formal verification of security protocols is thus an important, active
research topic, and a variety of approaches to (semi-)automated verification have been pro-
posed [Cre08, Bla02, GJ04]. Among others, type-based approaches [Aba99, GJ03, GJ04] have
advantages that protocols can be verified in a modular manner, and that it is relatively easy
to extend them to verify protocols at the source code level [BFG10]. They have however a
disadvantage that users have to provide complex type annotations, which require expertise in
both security protocols and type theories. Kikuchi and Kobayashi [KK09] developed a type
inference algorithm but it works only for symmetric cryptographic protocols.

To overcome the limitation of the type-based approaches and enable fully automated pro-
tocol verification, we integrate and extend the two lines of work – Gordon and Jeffrey’s
work [GJ04] for verifying protocols using both symmetric and asymmetric cryptographic proto-
cols, and Kikuchi and Kobayashi’s work. The outcome is an algorithm for automated verifica-
tion of authenticity in symmetric and asymmetric cryptographic protocols. The key technical
novelty lies in the symmetric notion of obligations and capabilities attached to name types,
which allows us to reason about causalities between actions of protocol participants in a gen-
eral and uniform manner in the type system. It not only enables automated type inference,
but also brings a more expressive power, enabling, e.g., verification of cryptographic protocols
with several parties. We have developed a type inference algorithm for the new type system,
and implemented a protocol verification tool SpiCA2 based on the algorithm. According to
experiments, SpiCA2 is very fast; it could successfully verify a number of protocols in less than
a second.

The rest of this chapter is structured as follows. Section 2.2 introduces a spi-calculus [AG99]
extended with correspondence assertions as a protocol description language. Sections 2.3 and
2.4 present our type system and sketches a type inference algorithm. Section 2.5 reports imple-
mentation and experiments. Sections 2.6 and 2.7 discuss extensions and related work respec-
tively. Section 2.8 compares the expressive power of our type system with that of Gordon and
Jeffrey’s and Section 2.9 gives the full proofs.

11

12 CHAPTER 2. TYPE-BASED VERIFICATION OF AUTHENTICITY

POSH:

A->B: n

B begins msg

B->A: {|(msg,n)|}skB
A ends msg

SOPH:

A->B: {|(msg,n)|}pkB
B begins msg

B->A: n

A ends msg

SOSH:

A->B: {|n|}pkB
B begins msg

B->A: {|msg,n|}pkA
A ends msg

Figure 2.1: Informal Description of Three Protocols

2.2 Processes

This section defines the syntax and operational semantics of the spi-calculus [AG99] extended
with correspondence assertions, which we call spiCA. The calculus is essentially the same as
that of Gordon and Jeffrey [GJ04], except (i) there are no type annotations or casts (as they
can be automatically inferred by our type inference algorithm), and (ii) there are no primitives
for witness and trust; supporting them is left for future work.

We assume that there is a countable set of names, ranged over by m,n, k, x, y, z, By
convention, we often use k,m, n, . . . for free names and x, y, z, . . . for bound names.

The set of messages, ranged over by M , is given by:

M ::= x | (M1,M2) | {M1}M2
| {|M1|}M2

(M1,M2) is a pair consisting of M1 and M2. The message {M1}M2 ({|M1|}M2
, resp.) represents

the ciphertext obtained by encrypting M1 with the symmetric (asymmetric, resp.) key M2. For
the asymmetric encryption, we do not distinguish between encryption and signing; {|M1|}M2

denotes an encryption if M2 is a public key, while it denotes signing if M2 is a private key.
The set of processes, ranged over by P , is given by:

P ::= 0 |M1!M2 |M?x.P | (P1 |P2) | ∗P | (νx)P | (νsymx)P | (νasymx, y)P
| check M1 is M2.P | split M is (x, y).P |match M1 is (M2, y).P
| decrypt M1 is {x}M2

.P | decrypt M1 is {|x|}M2
−1 .P

| beginM.P | endM

The names denoted by x, y are bound in P . We write [M1/x1, . . . ,Mn/xn]P for the process
obtained by replacing every free occurrence of x1, . . . , xn in P with M1, . . . , Mn. We write
FN(P) for the set of free (i.e. non-bounded) names in P .

Process 0 does nothing, M1!M2 sends M2 over the channel M1, and M1?x.P waits to receive
a message on channel M1, and then binds x to it and behaves like P . P1 |P2 executes P1 and
P2 in parallel, and ∗P executes infinitely many copies of P in parallel.

We have three kinds of name generation primitives: (νx) for ordinary names, (νsymx)
for symmetric keys, and (νasymx1, x2,) for asymmetric keys. (νasymx1, x2, P) creates a fresh
key pair (k1, k2) (where k1 and k2 are encryption and decryption keys respectively), and be-
haves like [k1/x1, k2/x2]P . The process check M1 is M2.P behaves like P if M1 and M2 are
the same name, and otherwise behaves like 0. The process split M is (x, y).P behaves like
[M1/x,M2/y]P if M is a pair (M1,M2); otherwise it behaves like 0. match M1 is (M2, y).P
behaves like [M3/y]P if M1 is a pair of the form (M2,M3); otherwise it behaves like 0. Process
decrypt M1 is {x}M2 .P (decrypt M1 is {|x|}M2

−1 .P , resp.) decrypts ciphertext M1 with
symmetric (asymmetric, resp.) key M2, binds x to the result and behaves like P ; if M1 is
not an encryption, or an encryption with a key not matching M2, then it behaves like 0. The
process beginM.P raise an event beginM and behaves like P , while endM just raises an
event endM ; they are used to express expected authenticity properties.

Example 2.2.1. We use the three protocols in Figure 2.1, taken from [GJ04], as running
examples. The POSH and SOSH protocols aim to pass a new message msg from B to A, so

2.2. PROCESSES 13

(νasymskB , pkB)(net!pkB | (* create asymmetric keys for B and make pkB public *)
(νnon)(net!non | (* A creates a nonce and sends it *)
net?ctext.decrypt ctext is {|x|}pkB−1 . (* receive a cypertext and decrypt it*)

split x is (m,non′).check non is non′. (* decompose pair x and check nonce *)
endm) | (* believe that m came from B *)

net?n. (* B receives a nonce *)
(νmsg)begin msg. (* create a message and declare that it is going to be sent*)
net!{|(msg, n)|}skB) (* encrypt and send (msg, n) *)

Figure 2.2: Public-Out-Secret-Home (POSH) Protocol in spiCA

(νasympkB , skB) (* create asymmetric keys for B *)
(net!pkB (* make pkB public *)
| (* Behavior of A *)
(νnon)(νmsg) (* create a nonce and a message *)
(net!{|(msg,non)|}pkB | (* encrypt and send (msg,non) *)

net?non′. (* receive a nonce *)
check non is non′. (* check nonce *)
end msg) (* end assertion *)
| (* Behavior of B *)
net?ctext. (* receive a cypertext *)
decrypt ctext is {|x|}skB−1 . (* decrypt the cypertext *)
split x is (m,non′′). (* decompose pair x *)
beginm. (* begin assertion *)
net!non′′) (* send the nonce *)

Figure 2.3: Secret-Out-Public-Home (SOPH) Protocol in spiCA

that A can confirm that msg indeed comes from B, while the SOPH protocol aims to pass msg

from A to B, so that A can confirm that msg has been received by B. The second and fourth
lines of each protocol expresses the required authenticity by using Woo and Lam’s correspon-
dence assertions [WL93]. “B begins msg” on the second line of POSH means “B is going
to send msg”, and “A ends msg” on the fourth line means “A believes that B has sent msg”.
The required authenticity is then expressed as a correspondence between begin- and end-events:
whenever an end-event (“A ends msg” in this example) occurs, the corresponding begin-event
(“B begins msg”) must have occurred.1 In the three protocols, the correspondence between
begin- and end-events is guaranteed in different ways. In POSH, the correspondence is guaran-
teed by the signing of the second message with B’s secret key, so that A can verify that B has
created the pair (msg, n). In SOPH, it is guaranteed by encrypting the first message with B’s
public key, so that the nonce n, used as an acknowledgment, cannot be forged by an attacker.
SOSH is similar to POSH, but keeps n secret by using A and B’s public keys.

Figure 2.2 gives a formal description of the POSH protocol, represented as a process in
spiCA. The first line is an initial set-up for the protocol. An asymmetric key pair for B is
created and the decryption key pkB is sent on a public channel net, on which an attacker can
send and receive messages. The next four lines describe the behavior of A. On the second line,
a nonce non is created and sent along net. On the third line, a ciphertext ctext is received and
decrypted (or verified) with B’s public key. On the fourth line, the pair is decomposed and it
is checked that the second component coincides with the nonce sent before. On the fifth line,

1There are two types of correspondence assertions in the literature: non-injective (or one-to-many) and
injective (or one-to-one) correspondence. Throughout the chapter we consider the latter.

14 CHAPTER 2. TYPE-BASED VERIFICATION OF AUTHENTICITY

an end-event is raised, meaning that A believes that msg came from B. The last three lines
describe the behavior of B. On the sixth line, a nonce n is received from net. On the seventh
line, a new message msg is created and a begin-event is raised, meaning that B is going to send
msg. On the last line, the pair (msg, n) is encrypted (or signed) with B’s secret key and sent
on net.

Figure 2.3 gives a formal description of the SOPH protocol in spiCA.

Following Gordon and Jeffrey, we call a process safe if it satisfies correspondence assertions
(i.e. for each end-event, a corresponding begin-event has occurred before), and robustly safe if
a process is safe in the presence of arbitrary attackers (representable in spiCA). Proving robust
safety automatically is the goal of protocol verification in the present chapter. To formalize
the robust safety, we use the operational semantics shown in Figure 2.4. A runtime state is
a quadruple 〈Ψ, E,N,K〉, where Ψ is a multiset of processes, and E is the set of messages on
which begin-events have occurred but the matching end-events have not. N is the set of names
(including keys) created so far, and K is the set of key pairs. The special runtime state Error
denotes that correspondence assertions have been violated. Note that a reduction gets stuck
when a process does not match a rule. For example, split M is (x, y).P is reducible only if M
is of the form (M1,M2). Using the operational semantics, robust safety is defined as follows:

Definition 2.2.1 (safety, robust safety). A process P is safe if 〈{P}, ∅,FN(P), ∅〉 6−→∗Error.
A process P is robustly safe if P |O is safe for every spiCA process O that contains no be-
gin/end/check operations.2

〈Ψ] {n?y.P, n!M}, E,N,K〉 −→ 〈Ψ] {[M/y]P}, E,N,K〉 (R-Com)

〈Ψ] {P |Q}, E,N,K〉 −→ 〈Ψ] {P,Q}, E,N,K〉 (R-Par)

〈Ψ] {∗P}, E,N,K〉 −→ 〈Ψ] {∗P , P}, E,N,K〉 (R-Rep)
〈Ψ] {(νx)P}, E,N,K〉 −→ 〈Ψ] {[n/x]P}, E,N ∪ {n},K〉 (n /∈ N) (R-New)

〈Ψ] {(νsymx)P}, E,N,K〉 −→ 〈Ψ] {[k/x]P}, E,N ∪ {k},K〉 (k /∈ N) (R-NewSk)

〈Ψ] {(νasymx, y)P}, E,N,K〉
−→ 〈Ψ] {[k1/x, k2/y]P}, E,N ∪ {k1, k2},K ∪ {(k1, k2)}〉 (k1, k2 /∈ N)

(R-NewAk)

〈Ψ] {check n is n.P}, E,N,K〉 −→ 〈Ψ] {P}, E,N,K〉 (R-Chk)

〈Ψ] {split (M,N) is (x, y).P}, E,N,K〉 −→ 〈Ψ] {[M/x,N/y]P}, E,N,K〉 (R-Splt)

〈Ψ] {match (M,N) is (M, z).P}, E,N,K〉 −→ 〈Ψ] {[N/z]P}, E,N,K〉 (R-Mtch)

〈Ψ] {decrypt {M}k is {x}k.P}, E,N,K〉 −→ 〈Ψ] {[M/x]P}, E,N,K〉 (R-DecS)

〈Ψ] {decrypt {|M |}k1 is {|x|}k2−1 .P}, E,N,K〉
−→ 〈Ψ] {[M/x]P}, E,N,K〉 (if (k1, k2) ∈ K)

(R-DecA)

〈Ψ] {beginM.P}, E,N,K〉 −→ 〈Ψ] {P}, E] {M}, N,K〉 (R-Bgn)

〈Ψ] {endM}, E] {M}, N,K〉 −→ 〈Ψ, E,N,K〉 (R-End)

〈Ψ] {endM}, E,N,K〉 −→ Error (if M 6∈ E) (R-Err)

Figure 2.4: Operational Semantics

2.3 Type System

This section presents a type system such that well-typed processes are robustly safe. This
allows us to reduce protocol verification to type inference.

2Having no check operations is not a limitation, as an attacker process can check the equality of n1 and n2

by match (n1, n1) is (n2, x).P .

2.3. TYPE SYSTEM 15

2.3.1 Basic Ideas

Following the previous work [GJ03, GJ04, KK09], we use the notion of capabilities (called
effects in [GJ03, GJ04]) in order to statically guarantee that end-events can be raised only after
the corresponding begin-events. A capability ϕ is a multiset of atomic capabilities of the form
end(M), which expresses a permission to raise “end M” event. The robust safety of processes
is guaranteed by enforcing the following conditions on capabilities: (i) to raise an “end M”
event, a process must possess and consume an atomic end(M) capability; and (ii) an atomic
end(M) capability is generated only by raising a “begin M” event. Those conditions can be
statically enforced by using a type judgment of the form: Γ;ϕ ` P , which means that P can be
safely executed under the type environment Γ and the capabilities described by ϕ. For example,
x : T ; {end(x)} ` endx is a valid judgment, but x : T ; ∅ ` endx is not. The two conditions
above can be locally enforced by the following typing rules for begin and end events:

Γ;ϕ+ {end(M)} ` P
Γ;ϕ ` beginM.P Γ;ϕ+ {end(M)} ` endM

The left rule ensures that the new capability end(M) is available after the begin-event, and
the right rule for end ensures that the capability end(M) must be present.

The main difficulty lies in how to pass capabilities between processes. For example, recall
the POSH protocol in Figure 2.2, where begin- and end-events are raised by different protocol
participants. The safety of this protocol can be understood as follows: B obtains the capability
end(msg) by raising the begin event, and then passes the capability to A by attaching it to the
nonce n. A then extracts the capability and safely executes the end event. As n is signed with
B’s private key, there is no way for an attacker to forge the capability. For another example,
consider the SOPH protocol in the middle of Figure 2.1. In this case, the nonce n is sent in
clear text, so that B cannot pass the capability to A through the second message. Instead, the
safety of the SOPH protocol is understood as follows: A attaches to n (in the first message)
an obligation to raise the begin-event. B then discharges the obligation by raising the begin-
event, and notifies of it by sending back n. Here, note that an attacker cannot forge n, as it is
encrypted by B’s public key in the first message.

To capture the above reasoning by using types, we introduce types of the form N(ϕ1, ϕ2),
which describes names carrying an obligation ϕ1 and a capability ϕ2. In the examples above,
n is given the type N(∅, {end(msg)}) in the second message of the POSH protocol, and the
type N({end(msg)}, ∅) in the first message of the SOPH protocol.

The above types N(∅, {end(msg)}) and N({end(msg)}, ∅) respectively correspond to re-
sponse and challenge types in Gordon and Jeffrey’s type system [GJ04]. Thanks to the uniform
treatment of name types, type inference for our type system reduces to a problem of solving
constraints on capabilities and obligations, which can further be reduced to linear programming
problems by using the technique of [KK09]. The uniform treatment also allows us to express
a wider range of protocols (such as cryptographic protocols with several parties). Note that
neither obligations nor asymmetric cryptography are supported by the previous type system
for automated verification [KK09]; handling them requires non-trivial extensions of the type
system and the inference algorithm.

2.3.2 Types

The syntax of types, ranged over by τ , is given in Figure 2.5, where ri ranges over non-
negative rational numbers. The type N`(ϕ1, ϕ2) is assigned to names carrying obligations ϕ1

and capabilities ϕ2. Here, obligations and capabilities are mappings from atomic capabilities
to rational numbers. For example, N`({end(a) 7→ 1.0}, {end(b) 7→ 2.0}) describes a name that
carries the obligation to raise begin a once, and the capability to raise end b twice. Fractional

16 CHAPTER 2. TYPE-BASED VERIFICATION OF AUTHENTICITY

τ ::= N`(ϕ1, ϕ2) | SKey(τ) | DKey(τ) | EKey(τ) | τ1 × τ2 types
ϕ ::= {A1 7→ r1, . . . , Am 7→ rm} capabilities
A ::= end(M) | chk`(M,ϕ) atomic capabilities
ι ::= x | 0 | 1 | 2 | · · · extended names
` ::= Pub | Pr name qualifiers

Figure 2.5: Types and Capabilities

values are possible: N`(∅, {end(b) 7→ 0.5}) means that the name carries a half of the capability
to raise end b, so that if combined with another half of the capability, it is allowed to raise end b.
The introduction of fractions slightly increases the expressive power of the type system, but
the main motivation for it is rather to enable efficient type inference as in [KK09]. When the
ranges of obligations and capabilities are integers, we often use multiset notations; for example,
we write {end(a), end(a), end(b)} for {end(a) 7→ 2, end(b) 7→ 1}. The atomic capability
chk`(M,ϕ) expresses the capability to check equality on M by check M is M ′.P : since nonce
checking releases capabilities this atomic effect is used to ensure that each nonce can only be
checked once. The component ϕ expresses the capability that can be extracted by the check
operation (see the typing rule for check operations given later).

Qualifier ` attached to name types are essentially the same as the Public/Private qualifiers
in Gordon and Jeffrey’s type system and express whether a name can be made public or not.
We often write Un for NPub(∅, ∅).

The type SKey(τ) describes symmetric keys used for decrypting and encrypting values of
type τ . The type EKey(τ) (DKey(τ), resp.) describes asymmetric keys used for encrypting
(decrypting, resp.) values of type τ . The type τ1 × τ2 describes pairs of values of types
τ1 and τ2. As in [KK09], we express the dependency of types on names by using indices.
For example, the type Un × N`(∅, {end(0)}) denotes a pair (M1,M2) where M1 has type
Un and M2 has type N`(∅, {end(M1)}). The type Un × (Un × NPub(∅, {end(0, 1) 7→ r})
describes triples of the form (M1, (M2,M3)), where M1 and M2 have type Un, and M3 has
type NPub(∅, {end(M2,M1) 7→ r}). In general, an index i is a natural number referring to the
i-th closest first component of pairs. In the syntax of atomic capabilities end(M), M is an
extended message that may contain indices. We use the same metavariable M for the sake of
simplicity.

Predicates on types

Following Gordon and Jeffrey, we introduce two predicates Pub and Taint on types, inductively
defined by the rules in Figure 2.6. Pub(τ) means that a value of type τ can safely be made
public by e.g. sending it through a public channel. Taint(τ) means that a value of type τ may
have come from an untrusted principal and hence cannot be trusted. It may for instance have
been received through a public channel or have been extracted from a ciphertext encrypted
with a public key.

The first rule says that for N`(ϕ1, ϕ2) to be public, the obligation ϕ1 must be empty, as
there is no guarantee that an attacker fulfills the obligation. Contrary, for N`(ϕ1, ϕ2) to be
tainted, the capability ϕ2 must be empty if ` = Pub, as the name may come from an attacker
and the capability cannot be trusted.3

Pub and Taint are a sort of dual, flipped by the type constructor EKey. In terms of
subtyping, Pub(τ) and Taint(τ) may be understood as τ ≤ Un and Un ≤ τ respectively,

3These conditions are more liberal than the corresponding conditions in Gordon and Jeffrey’s type system.
In their type system, for Public Challenge ϕ1 (which corresponds to NPub(ϕ1, ∅) in our type system) to be
tainted, ϕ1 must also be empty.

2.3. TYPE SYSTEM 17

` = Pub ϕ1 = ∅
Pub(N`(ϕ1, ϕ2))

` = Pub⇒ ϕ2 = ∅
Taint(N`(ϕ1, ϕ2))

Pub(τ1) Pub(τ2)

Pub(τ1 × τ2)

Taint(τ1) Taint(τ2)

Taint(τ1 × τ2)

Pub(τ) Taint(τ)

Pub(SKey(τ))

Pub(τ) Taint(τ)

Taint(SKey(τ))

Taint(τ)

Pub(EKey(τ))

Pub(τ)

Taint(EKey(τ))

Pub(τ)

Pub(DKey(τ))

Taint(τ)

Taint(DKey(τ))

Figure 2.6: Predicates Pub and Taint

where Un is the type of untrusted, non-secret data. Note that DKey is co-variant, EKey
is contra-variant, and SKey is invariant; this is analogous to Pierce and Sangiorgi’s IO types
with subtyping [PS96].

Operations and relations on capabilities and types

We write dom(ϕ) for the set {A | ϕ(A) > 0}. We identify capabilities up to the following
equality ≈:

ϕ1 ≈ ϕ2 ⇐⇒ (dom(ϕ1) = dom(ϕ2) ∧ ∀A ∈ dom(ϕ1).ϕ1(A) = ϕ2(A)).

We write ϕ ≤ ϕ′ if ϕ(A) ≤ ϕ′(A) holds for every A ∈ dom(ϕ) and we define the summation of
two capabilities by: (ϕ1 +ϕ2)(A) = ϕ1(A) +ϕ2(A). This is a natural extension of the multiset
union. We write ϕ1 − ϕ2 for the least ϕ such that ϕ1 ≤ ϕ+ ϕ2.

As we use indices to express dependent types, messages may be substituted in types. Let i
be an index and M a message. The substitution [M/i]τ is defined inductively in the straight-
forward manner, except for pair types where

[M/i](τ1 × τ2) = ([M/i]τ1)× ([M/(i+ 1)]τ)

such that the index is shifted for the second component.

2.3.3 Typing

We introduce two forms of type judgments: Γ;ϕ ` M : τ for messages, and Γ;ϕ ` P for
processes, where Γ, called a type environment, is a sequence of type bindings of the form
x1 :τ1, . . . , xn :τn. Judgment Γ;ϕ `M : τ means that M evaluates to a value of type τ under the
assumption that each name has the type described by Γ and that capability ϕ is available. Γ;ϕ `
P means that P can be safely executed (i.e. without violation of correspondence assertions)
if each free name has the type described by Γ and the capability ϕ is available. For example,
x : Un; {end(x)} ` endx is valid but x : Un; ∅ ` endx is not.

We consider only the judgements that are well-formed in the sense that (i) ϕ refers to only
the names bound in Γ, and (ii) Γ must be well-formed, i.e., if Γ is of the form Γ1, x : τ,Γ2 then
τ only refers to the names bound in Γ1 and x is not bound in neither Γ1 nor Γ2. Formally,
the conditions for type judgments and type environments are given in Figure 2.7. Here, ↑N
denotes the set of extended names obtained from N by replacing each number i in N with
i+ 1. For example, ↑{x, y, 0} = {x, y, 1}. We freely permute bindings in type environments as
long as they are well-formed; for example, we do not distinguish between x : Un, y : Un and
y : Un, x : Un.

18 CHAPTER 2. TYPE-BASED VERIFICATION OF AUTHENTICITY

`wf Γ FN(ϕ) ⊆ dom(Γ) dom(Γ) `wf τ
`wf Γ;ϕ `M : τ

`wf Γ FN(ϕ) ⊆ dom(Γ)

`wf Γ;ϕ ` P

`wf ∅
`wf Γ dom(Γ) `wf τ x /∈ dom(Γ)

`wf Γ, x : τ

N `wf τ1 {0} ∪ ↑N `wf τ2
N `wf τ1 × τ2

FN(ϕ1) ∪ FN(ϕ2) ⊆ N
N `wf N`(ϕ1, ϕ2)

N `wf τ
N `wf SKey(τ)

N `wf τ
N `wf DKey(τ)

N `wf τ
N `wf EKey(τ)

Figure 2.7: Well-formedness Conditions for Type Judgments

Typing

The typing rules are shown in Figure 2.8. The rule T-Cast says that the current capability
can be used for discharging obligations and increasing capabilities of the name. T-Cast plays
a role similar to the typing rule for cast processes in Gordon and Jeffrey’s type system, but
our cast is implicit and changes only the capabilities and obligations, not the shape of types.
This difference is important for automated type inference. The other rules for messages are
standard; T-Pair is the standard rule for dependent sum types (except for the use of indices).

In the rules for processes, the capabilities shown by can be any capabilities. The rules are
also similar to those of Gordon and Jeffrey, except for the rules T-Out, T-In, T-NewN, and
T-Chk. In rule T-Out, we require that the type of message M2 is public as it can be received
by any process, including the attacker. Similarly, in rule T-In we require that the type of the
received value x is tainted, as it may come from any process. This is different from Gordon and
Jeffrey’s type system where the type of messages sent to or received from public channels must
be Un, and a subsumption rule allows any value of a public type to be typed as Un and a value
of type Un to be typed as any tainted type. In effect, our type system can be considered a
restriction of Gordon and Jeffrey’s such that the subsumption rule is only allowed for messages
sent or received via public channels. This point is important for automated type inference.

In rule T-NewN, the obligation ϕ1 is attached to the fresh name x and recorded in the
atomic check capability. Capabilities corresponding to ϕ1 can then later be extracted by a check
operation if the obligation has been fulfilled. In rule T-Chk, chk`(M1, ϕ4) in the conclusion
means that the capability to check M1 must be present. If the check succeeds, the capability
ϕ5 attached to M2 can be extracted and used in P . In addition, the obligations attached to M2

must be empty, i.e. all obligations initially attached to the name must have been fulfilled, and
hence the capability ϕ4 can be extracted and used in P . The above mechanism for extracting
capabilities through obligations is different from Gordon and Jeffrey’s type system in a subtle
but important way, and provides more expressive power (see Section 2.8). The remaining rules
should be self-explanatory.

Example 2.3.1. Recall the POSH protocol in Figure 2.2. Let τ be Un×NPub(∅, {end(0)}).
Then the process describing the behavior of B (net?n. · · · in the last five lines) is typed as the
upper part of Figure 2.9. Here, Γ = net :Un, skB :EKey(τ), n :Un,msg :Un. Similarly, the part
decrypt ctext is {|x|}pkB−1 . · · · of process A is typed as the lower part of Figure 2.9. Here, Γ2 =
net:Un, pkB :DKey(τ),non:Un, ctext:Un and Γ3 = Γ2, x:τ,m:Un,non′ :NPub(∅, {end(m)}).
Let P1 be the entire process of the POSH protocol. It is typed by net : Un; ∅ ` P1.

The SOPH and SOSH protocols in Figure 2.1 are typed in a similar manner. We show here

2.3. TYPE SYSTEM 19

Γ, x : τ ;ϕ ` x : τ
(T-Var) Γ;ϕ1 `M1 : τ1 Γ;ϕ2 `M2 : [M1/0]τ2

Γ;ϕ1 + ϕ2 ` (M1,M2) : τ1 × τ2
(T-Pair)

Γ;ϕ1 `M1 : τ1 Γ;ϕ2 `M2 : SKey(τ1)

Γ;ϕ1 + ϕ2 ` {M1}M2
: N`(∅, ∅)

(T-SEnc)

Γ;ϕ1 `M1 : τ Γ;ϕ2 `M2 : EKey(τ)

Γ;ϕ1 + ϕ2 ` {|M1|}M2
: N`(∅, ∅)

(T-AEnc)

Γ; ∅ ` 0
(T-Zero) Γ;ϕ1 `M : N`(ϕ2, ϕ3)

Γ;ϕ1 + ϕ′2 + ϕ′3 `M : N`(ϕ2 − ϕ′2, ϕ3 + ϕ′3)
(T-Cast)

Γ;ϕ1 ` P1 Γ;ϕ2 ` P2

Γ;ϕ1 + ϕ2 ` P1 |P2

(T-Par)
Γ;ϕ′ ` P ϕ′ ≤ ϕ

Γ;ϕ ` P
(T-CSub)

Γ;ϕ1 `M1 : N`(∅, ∅)
Γ;ϕ2 `M2 : τ Pub(τ)

Γ;ϕ1 + ϕ2 `M1!M2

(T-Out)

Γ;ϕ1 `M : N`(∅, ∅)
Γ, x : τ ;ϕ2 ` P Taint(τ)

Γ;ϕ1 + ϕ2 `M?x.P
(T-In)

Γ, x : N`(ϕ1, ∅), ϕ+ {chk`(x, ϕ1)} ` P
Γ;ϕ ` (νx)P

(T-NewN)
Γ; ∅ ` P
Γ; ∅ ` ∗P

(T-Rep)

Γ, x : SKey(τ);ϕ ` P
Γ;ϕ ` (νsymx)P

(T-NewSk)
Γ, k1 : EKey(τ), k2 : DKey(τ);ϕ ` P

Γ;ϕ ` (νasymk1, k2)P
(T-NewAk)

Γ;ϕ1 `M1 : N`(,) Γ;ϕ2 `M2 : SKey(τ) Γ, x : τ ;ϕ3 ` P
Γ;ϕ1 + ϕ2 + ϕ3 ` decrypt M1 is {x}M2

.P
(T-SDec)

Γ;ϕ1 `M1 : N`(,) Γ;ϕ2 `M2 : DKey(τ) Γ, x : τ ;ϕ3 ` P
Γ;ϕ1 + ϕ2 + ϕ3 ` decrypt M1 is {|x|}M2

−1 .P
(T-ADec)

Γ;ϕ1 `M1 : N`(,) Γ;ϕ2 `M2 : N`(∅, ϕ5) Γ;ϕ3 + ϕ4 + ϕ5 ` P
Γ;ϕ1 + ϕ2 + ϕ3 + {chk`(M1, ϕ4)} ` check M1 is M2.P

(T-Chk)

Γ;ϕ1 `M : τ1 × τ2 Γ, y : τ1, z : [y/0]τ2;ϕ2 ` P
Γ;ϕ1 + ϕ2 ` split M is (y, z).P

(T-Split)

Γ;ϕ1 `M1 : τ1 × τ2 Γ;ϕ2 `M2 : τ1 Γ, z : [M2/0]τ2;ϕ3 ` P
Γ;ϕ1 + ϕ2 + ϕ3 `match M1 is (M2, z).P

(T-Match)

Γ;ϕ+ {end(M)} ` P
Γ;ϕ ` beginM.P

(T-Begin) Γ;ϕ+ {end(M)} ` endM
(T-End)

Figure 2.8: Typing Rules

20 CHAPTER 2. TYPE-BASED VERIFICATION OF AUTHENTICITY

Γ; ∅ ` msg : Un

Γ; ∅ ` n : NPub(∅, ∅)
Γ; {end(msg)} ` n : NPub(∅, {end(msg)})

Γ; {end(msg)} ` (msg, n) : τ
· · ·

Γ; {end(msg), chkPub(msg, ∅)} ` net!{|(msg, n)|}skB
Γ; {chkPub(msg, ∅)} ` begin msg. · · ·

net : Un, skB : EKey(τ), n : Un; ∅ ` (νmsg) · · ·
net : Un, skB : EKey(τ); ∅ ` net?n. · · ·

Γ3; {end(m)} ` endm

Γ3; {chkPub(non, ∅)} ` check non is non′. · · ·
Γ2, x : τ ; {chkPub(non, ∅)} ` split x is (m,non). · · ·

Γ2; {chkPub(non, ∅)} ` decrypt ctext is {|x|}pkB−1 . · · ·

Figure 2.9: Partial Typing of the POSH Protocol

only key types:

SOPH:
pkB : EKey(Un×NPub({end(0)}, ∅)), skB : DKey(Un×NPub({end(0)}, ∅))

SOSH:
pkA : EKey(Un×NPr(∅, {end(0)})), skA : DKey(Un×NPr(∅, {end(0)}))
pkB : EKey(Un×NPr(∅, ∅)), skB : DKey(Un×NPr(∅, ∅))

Note that for POSH and SOPH the name qualifier must be Pub, and only for the SOSH protocol
may it be Pr.

2.3.4 Soundness of the Type System

We first prepare the following lemma, which implies that, in the definition of robust safety, it
is sufficient to consider only well-typed opponent processes (see Section 2.9 for proofs):

Lemma 2.3.1. If O is a process that contains no begin/end/check, then there exists O′ that
satisfies the following conditions:

1. x1 : Un, . . . , xm : Un; ∅ ` O′, where {x1, . . . , xk} = FN(O).

2. For any process P , if P |O′ is safe then so is P |O.

Hence, by the lemma above, it suffices to show the following lemma:

Lemma 2.3.2. If ∅; ∅ ` P then P is safe.

Soundness of the type system may then be stated as follows:

Theorem 2.3.3 (Soundness). If x1 : Un, . . . , xm : Un; ∅ ` P then P is robustly safe.

Proof. Suppose x1 : Un, . . . , xn : Un; ∅ ` P . Let O be a process that does not contain be-
gin/end/check. We need to show that P |O is safe. By Lemma 2.3.1 there exists a process
O′ such that (i) y1 : Un, . . . , yk : Un; ∅ ` O′ and (ii) if P |O′ is safe then so is P |O. Let
{z1 : Un, . . . , zm : Un} = {x1 : Un, . . . , xn : Un}∪{y1 : Un, . . . , yk : Un}. By weakening and the
typing rules we have ∅; ∅ ` (νz1) · · · (νzm)(P |O′), and by Lemma 2.3.2 (νz1) · · · (νzm)(P |O′)
is safe. By definition of safety P |O′ is also safe, and by condition (ii) above so is P |O.

2.4. TYPE INFERENCE 21

2.4 Type Inference

We now briefly discuss type inference. For this we impose a minor restriction to the type
system, namely that in rule T-Pair, if M1 is not a name then the indice 0 cannot occur in
τ2. Similarly, in rule T-Match we require that index 0 does not occur unless M2 is a name.
These restrictions prevent the size of types and capabilities from blowing up. Given as input
a process P with free names x1, . . . , xn, the algorithm to decide x1 : Un, . . . , xn : Un; ∅ ` P
proceeds as follows:

1. Determine the shape of the type (or simple type) of each term via a standard unification
algorithm, and construct a template of a type derivation tree by introducing qualifier and
capability variables.

2. Generate a set C of constraints on qualifier and capability variables based on the typing
rules such that C is satisfiable if and only if x1 : Un, . . . , xn : Un; ∅ ` P .

3. Solve the qualifier constraints.

4. Transform the capability constraints to linear inequalities over the rational numbers.

5. Use linear programming to determine if the linear inequalities are satisfiable.

In step 1, we can assume that there are no consecutive applications of T-Cast and T-CSub.
Thus, the template of a type derivation tree can be uniquely determined: for each process and
message constructor there is an application of the rule matching the constructor followed by at
most one application of T-Cast or T-CSub.

At step 3 we have a set of constraints C of the form:

{`i = `′i | i ∈ I} ∪ {(`′′j = Pub)⇒ (ϕj = ∅) | j ∈ J} ∪ C1

where I and J are finite sets, `i, `
′
i, `
′′
j are qualifier variables or constants, and C1 is a set of

effect constraints (like ϕ1 ≤ ϕ2). Here, constraints on qualifiers come from equality constraints
on types and conditions Pub(τ) and Taint(τ). In particular, (`′′j = Pub) ⇒ (ϕj = ∅) comes
from the rule for Taint(N`′′j

(ϕ,ϕj)). By obtaining the most general unifier θ of the first set of

constraints {`i = `′i | i ∈ I} we obtain the constraint set C ′ ≡ {(θ`′′j = Pub)⇒ (θϕj = ∅) | j ∈
J} ∪ θC1. Let γ1, . . . , γk be the remaining qualifier variables, and let θ′ = [Pr/γ1, . . . ,Pr/γk].
Then C is satisfiable if and only if θ′C ′ is satisfiable. Thus, we obtain the set θ′C ′ of effect
constraints that is satisfiable if and only if x1 : Un, . . . , xn : Un; ∅ ` P holds.

Except for step 3, the above algorithm is almost the same as previous work and we refer
the interested reader to [KK07, KK09]. By a similar argument to that given in [KK09] we can
show that under the assumptions that the size of each begin/end assertion occurring in the
protocol is bounded by a constant and that the size of simple types is polynomial in the size of
the protocol, the type inference algorithm runs in polynomial time.

Example 2.4.1. Recall the POSH protocol in Figure 2.2. By the simple type inference in step
1 we get the following types for names:

non,non′ : N, pkB : DKey(N×N), . . .

By preparing qualifier and capability variables we get the following elaborated types and con-
straints on those variables:

non : Nγ1(ξ0,o, ξ0,c),non′ : Nγ′1
(ξ′0,o, ξ

′
0,c), . . .

Pub(Nγ1(ξ0,o, ξ0,c)) γ1 = γ′1 ξ6 ≤ ξ3 + ξ4 + ξ5
ξ2 ≥ ξ′0,o + (ξ5 − ξ′0,c) ξ7 ≥ ξ1 + ξ2 + ξ3 + {chkγ1(non, ξ4)} · · ·

Here, the constraint Pub(Nγ1(ξ0,o, ξ0,c)) comes from net!non, and the other constraints from
check non is non. · · ·. By solving the qualifier constraints, we get γ1 = γ′1 = Pub, . . ., and

22 CHAPTER 2. TYPE-BASED VERIFICATION OF AUTHENTICITY

are left with constraints on capability variables. By computing (an over-approximation of) the
domain of each capability, we can reduce it to constraints on linear inequalities. For example,
by letting ξi = {chkPub(non, ξ4) 7→ xi, end(m) 7→ yi, . . .}, the last constraint is reduced to:

x7 ≥ x1 + x2 + x3 + 1 y7 ≥ y1 + y2 + y3 + 0 · · ·

2.5 Implementation and Experiments

We have implemented a protocol verifier SpiCA2 based on the type system and inference
algorithm discussed above4. We have tested SpiCA2 on several protocols with the results of
the experiments shown in Table 2.1. Experiments were conducted using a machine with a 3GHz
CPU and 2GB of memory.

The descriptions of the protocols used in the experiments are available at the above URL.
POSH, SOPH, and SOSH are (spiCA-notations of) the protocols given in Figure 2.1. GNSL is
the generalized Needham-Schroeder-Lowe protocol [CM06] given in Section 2.8. Otway-Ree is
Otway-Ree protocol using symmetric keys. Iso-two-pass is from [GJ04], and the remaining
protocols are the Needham-Schroeder-Lowe protocol and its variants, taken from the sample
programs of Cryptyc [HJ04] (but with type annotations and casts removed). ns-flawed is
the original flawed version, nsl-3 and nsl-7 are 3- and 7-message versions of Lowe’s fix,
respectively. See [HJ04] for the other three. As the table shows, all the protocols have been
correctly verified or rejected. Furthermore, verification succeeded in less than a second except
for GNSL. For GNSL, the slow-down is caused by the explosion of the number of atomic capabilities
to be considered, which blows up the number of linear inequalities obtained from capability
constraints.

Protocols Typing Time (sec.)
POSH yes 0.001
SOPH yes 0.001
SOSH yes 0.001
GNSL yes 7.40
Otway-Ree yes 0.019
Iso-two-pass yes 0.004

Protocols Typing Time (sec.)
ns-flawed no 0.007
nsl-3 yes 0.015
nsl-7 yes 0.049
nsl-optimized yes 0.012
nsl-with-secret yes 0.023
nsl-with-secret-optimized yes 0.016

Table 2.1: Experimental results

2.6 Extensions

In this section we hint on how to modify our type system and inference algorithm to deal with
other features. Formalization and implementation of the extensions are left for future work.

Our type system can be easily adopted to deal with non-injective correspondence [GJ02b],
which allows multiple end-events to be matched by a single begin-event. It suffices to relax the
typing rules, for example, by changing the rules for begin- and end-events to:

Γ;ϕ+ {end(M) 7→ r} ` P r > 0

Γ;ϕ ` beginM.P

r > 0

Γ;ϕ+ {end(M) 7→ r} ` endM
4The implementation is mostly based on the formalization in the paper, except for a few extensions such

as sum types and private channels to securely distribute initial keys. The implementation can be tested at
http://www.kb.ecei.tohoku.ac.jp/~koba/spica2/.

http://www.kb.ecei.tohoku.ac.jp/~koba/spica2/

2.7. RELATED WORK 23

The capabilities attached to a name can now be extracted without using the check operation:

Γ ϕ `M : N`(ϕ1, ϕ2)

Γ ϕ+ ϕ2 `M : N`(ϕ1, ϕ2)

Fournet et al. [FGM07] generalized begin- and end-events by allowing predicates to be
defined by Datalog programs. For example, the process:

assume employee(a); expect canRead(a, handbook)

is safe in the presence of the clause “canRead(X,handbook) :- employee(X)”. Here, the prim-
itives assume and expect are like non-injective versions of begin and end. A similar type
system may be obtained by extending our capabilities to mappings from ground atomic for-
mulas to rational numbers (where ϕ(L) > 0 means L holds), and introducing rules for assume
and expect similar to the rules above for begin and end-events. To handle clauses like “can-
Read(X,handbook) :- employee(X)” we may add the following rule:

Γ;ϕ+ {L 7→ r} ` P There is an (instance of) clause L : − L1, . . . , Lk
r ≤ ϕ(Li) for each i ∈ {1, . . . , k}

Γ;ϕ ` P

which would allow us to derive a capability for L whenever there are capabilities for L1, . . . , Lk.
To reduce capability constraints to linear programming problems the algorithm could be ex-
tended to obtain the domain of each effect, taking clauses into account (i.e. if there is a clause
L : −L1, . . . , Lk and θL1, . . . , θLk are in the domain of ϕ, we add θL to the domain of ϕ).

To deal with trust and witness in [GJ04] we need to mix type environments and capabilities
so that type environments can also be attached to names and passed around.

2.7 Related Work

The present work extends two lines of previous work: Gordon and Jeffrey’s type systems for
authenticity [GJ03, GJ04], and Kikuchi and Kobayashi’s work to enable type inference for
symmetric cryptographic protocols [KK09]. In our opinion the extension is non-trivial, requiring
the generalization of name types and a redesign of the type system. This has yielded a fully-
automated and efficient protocol verifier. As for the expressive power, the fragment of Gordon
and Jeffrey’s type system (subject to minor restrictions) without trust and witness can be easily
embedded into our type system. On the other hand, thanks to the uniform treatment of name
types in terms of capabilities and obligations, our type system can express protocols that are
not typable in Gordon and Jeffrey’s type system, like the GNSL multi-party protocol [CM06].

Gordon et al. [BBF+08, BFG10] extended their work to verify source code-level implemen-
tation of cryptographic protocols by using refinement types. Their type systems still require
refinement type annotations. We plan to extend the ideas of the present work to enable partial
type inference for their type system. Bugliesi, Focardi, and Maffei [BFM05, FMP05, BFM07]
have proposed a protocol verification method that is closely related to Gordon and Jeffrey’s
type systems. They [FMP05] developed an algorithm for automatically inferring tags (which
roughly correspond to Gordon and Jeffrey’s types in [GJ03, GJ04]). Their inference algorithm
is based on exhaustive search of taggings by backtracking, hence our type inference would be
more efficient. As in Gordon and Jeffrey type system, their tagging and typing system is spe-
cialized for the typical usage of nonces in two-party protocols, and appears to be inapplicable
to multi-party protocols like GNSL.

There are automated protocol verification tools based on other approaches, such as ProVerif
[Bla02] and Scyther [Cre08]. Advantages of our type-based approach are: (i) it allows modular

24 CHAPTER 2. TYPE-BASED VERIFICATION OF AUTHENTICITY

verification of protocols5; (ii) it sets up a basis for studies of partial or full type inference for
more advanced type systems for protocol verification [BFG10] (recall Section 2.6); and (iii) upon
successful verification, it generates types as a certificate, which explains why the protocol is safe,
and can be independently checked by other type-based verifiers [GJ04, BFG10]. On the other
hand, ProVerif [Bla02] and Scyther [Cre08] have an advantage that they can generate an attack
scenario given a flawed protocol. Thus, we think that our type-based tool is complementary to
existing tools.

2.8 Relation to Gordon-Jeffrey Type System

We now turn to the subject of relating our type system to that of Gordon and Jeffrey. There
are two main points here. First, we show that the fragment of the Gordon-Jeffrey type system
without witness and trust can be embedded into our type system. We make some additional
restrictions regarding nonce types but these appear to be without loss of expressive power for
practice purposes. Second, we show that our formulation of nonce types actually allows us to
type realistic protocols untypable in the Gordon-Jeffrey type system.

2.8.1 Partial Embedding of Gordon and Jeffrey’s Type System

Restrictions

In order to show an embedding of their type system into ours we have to make a few modifica-
tions. Most notably, we (i) leave out an embedding for witness and trust processes, (ii) inline
the message subsumption rule, (iii) modify check atomic effects to additionally contain an effect
es, and (iv) change the typing of processes dealing with nonce types.

Modification (ii) means that the subsumption rule for messages is removed and inlined in
rules Proc Output Un and Proc Input Un (and similarly for Proc Repeat Input Un)
instead:

Γ `GJ M : Un Γ `GJ N : T T ≤GJ Un

Γ `GJ out M N : []
(Proc Output Un)

Γ `GJ M : Un Γ, y : T `GJ P : es Un ≤GJ T

Γ `GJ inp M (y : T);P : es
(Proc Input Un)

This modification is justified by the belief that honest processes should not have to apply
subsumptions in more general ways than this, in that doing so means changing a type from or
to something else than Un.

Modifications (iii) and (iv) mean that typing rules Proc Challenge and Proc Check
are changed as follows:

Γ `GJ fs Γ, x : l Challenge fs `GJ P : es

Γ `GJ new (x : l Challenge fs);P : es− [check l x fs]
(Proc Challenge)

5Although the current implementation of SpiCA2 only supports whole protocol analysis, it is easy to extend
it to support partial type annotations to enable modular verification. For that purpose, it suffices to allow
bound variables to be annotated with types, and generate the corresponding constraints during type inference.
For example, for a type-annotated input M?(x : τ1).P , we just need to add the subtype constraint τ1 ≤ τ to
rule T-In.

2.8. RELATION TO GORDON-JEFFREY TYPE SYSTEM 25

Γ `GJ M : l Challenge esC
Γ `GJ N : l Response esR Γ `GJ P : fs
es = fs − (esC + esR) es′C = esC

Γ `GJ check M is N ;P : es+ [check l M es′C]
(Proc Check)

One consequence of this is that M in rule Proc Check can no longer be bound to names with
different check capabilities. Moreover, while the addition of condition es′C = esC makes rule
Proc Check more restrictive than in the original formulation, breaking this condition does
require use of either subtyping or matching in a way that respectively should not be done by
honest processes, or does not appear to be required by a significant number of protocols. In
the former case, subtyping must be used to turn a public nonce into a private nonce. In the
latter case, match can be used to turn a check capability for one name into a check capability
for another name. This however, seems to be possible only for protocols that deadlock.

We apply a few less important modifications to the type system as well. Type Top is removed
and typing rules Proc Begin and Proc End are modified to simply require M to be of some
type T instead:

Γ `GJ M : T Γ `GJ P : es

Γ `GJ begin M ;P : es− [end M]
(Proc Begin)

Γ `GJ M : T Γ `GJ P : es

Γ `GJ end M ;P : es+ [end M]
(Proc End)

As far as we checked, all the protocols (without trust and witness) typed in [GJ04] are
typable under all the modifications above.

For the calculus we first consider a variant of the process calculus without inl (M) and inr (M)
messages, and without case processes. Secondly, we restrict end processes to match our non-
continuous variant. Thirdly, we restrict the generation of key pairs so that messages Encrypt(M)
and Decrypt (M) may only occur immediately following the creation of a key pair (see below).
The restrictions on the calculus can be removed by an easy extension of our calculus and type
system, and are improsed here just for the sake of simplicity.

Embedding

To ease the presentation we first add a derived process to both calculi

let y is x in P = match (c, x) is (c, y).P

for some constant c, along with typing rule

Γ;ϕ1 ` x : τ Γ, y : τ ;ϕ2 ` P
Γ;ϕ1 + ϕ2 ` let y is x in P

(T-Let)

derivable from typing rules T-Match and T-Pair.
The central ingredient in the embedding is the mapping of types. For this we first have a

straightforward mapping of messages M and effects es relying purely on syntactical conversion;
for this reason we shall often simply write M instead of [M] and es instead of [es]. We
then define the mapping [T] of a Gordon-Jeffrey type T as in Figure 2.10. We extend this to
environments Γ in the point-wise manner. Note that as discussed above we consider a variant of
the Gordon-Jeffrey type system withtop Top and Sum types and our mapping is left undefined

26 CHAPTER 2. TYPE-BASED VERIFICATION OF AUTHENTICITY

[(x :T,U)] = [T]× [0/x][U]

[Un] = NPub(∅, ∅)
[SharedKey(T)] = SKey([T])

[Public Challenge es] = NPub([es], ∅)
[Private Challenge es] = NPr([es], ∅)
[Public Responce es] = NPub(∅, [es])

[Private Responce es] = NPr(∅, [es])
[Encrypt Key(T)] = EKey([T])

[Decrypt Key(T)] = DKey([T])

Figure 2.10: Type mapping

[cast x is (y :T);P] = let y is x in [P]

[check x is (y :T);P] = check x is y.[P]

[end M ; 0] = endM

[begin M ;P] = beginM.[P]

[new (x :Un);P] = (νx)[P]

[new (x : l Challenge es);P] = (νx)[P]

[new (x :SharedKey(T));P] = (νsymx)[P]
new (x :KeyPair(T));
let y is Encrypt(x) in
let z is Decrypt(x) in
P (x 6∈ FN(P))

 = (νasymy, z)[P]

[new (x :Un);P] = (νx)[P]

[out M N] = M !N

[inp M (x :T);P] = M?x.[P]

[repeat inp M (x :T);P] = ∗M?x.[P]

[split M is (x :T, y :U);P] = split M is (x, y).[P]

[match M is (N, y : U);P] = match M is (N, y).[P]

[decrypt M is {x :T}N ;P] = decrypt M is {x}N .[P]

[decrypt M is {|x :T |}N−1 ;P] = decrypt M is {|x|}N−1 .[P]

[P | Q] = [P] | [Q]

[stop] = 0

Figure 2.11: Process mapping

for these. As we furthermore allow only a restricted use of KeyPair types the mapping is also
left undefined for these as well as for CR types since these should not occur in user code.

In the mapping of processes (Figure 2.11) we use the provided typing information in the
case of name restriction. As discussed above we impose some restrictions on processes and
the mapping is left undefined for these; for the remaining processes the mapping is defined
recursively.

Lemma 2.8.1. If Γ, x : T `GJ P and x 6∈ fn(P) then Γ `GJ P .

2.8. RELATION TO GORDON-JEFFREY TYPE SYSTEM 27

Proof. Follows from Lemma 10 in the technical report for the Gordon-Jeffrey type system
[GJ02a]

Lemma 2.8.2. If Public(T) then Pub([T]). If Tainted(T) then Taint([T]).

Proof. By straightforward induction in the derivation of Public(T) and Tainted(T) using their
algorithmic formulation. Rules Tainted Top, Public Sum, Tainted Sum, Public Keypair,
Tainted Keypair, and Public CR are not considered.

Lemma 2.8.3. If T ≤GJ Un then Pub([T]). If Un ≤GJ T then Taint([T]).

Proof. In both cases we see that rule Sub Public Tainted must have been used to derive the
subtyping expression. In both cases Lemma 2.8.2 gives us the desired result.

Lemma 2.8.4. If Γ `GJ M : T then [Γ]; ∅ ` [M] : [T].

Proof. By straightforward induction in the derivation of Γ `GJ M : T . Note that rules
Msg Subsum, Msg Inl, Msg Inr, and Msg Part cannot happen by restriction.

Theorem 2.8.5. If Γ `GJ P : es then [Γ]; [es] ` [P].

Proof. By induction in the derivation of Γ `GJ P : es.

• Case Proc Subsum: by induction hypothesis and the fact that es ≤ es+fs, we can apply
rule T-CSub to obtain the desired result.

• Case Proc Output Un: since Γ `GJ M : Un we have by Lemma 2.8.4 that [Γ]; ∅ ` M :
[Un]. As [Un] = NPub(∅, ∅) we get that the first condition for rule T-Out is satisfied.
Since Γ `GJ N : T we can again apply Lemma 2.8.4 to obtain [Γ]; ∅ ` N : [T] thereby
satisfying the second condition for rule T-Out. Finally, since T ≤GJ Un we get from
Lemma 2.8.3 that Pub([T]) and can then satisfy the final condition of rule T-Out.

• Case Proc Input Un: since Γ `GJ M : Un we have by Lemma 2.8.4 that [Γ]; ∅ `M : [Un].
As [Un] = NPub(∅, ∅) we get that the first condition for rule T-In is satisfied. Since
Γ, y : T `GJ P : es we have by induction hypothesis that the second condition is satisfied.
Finally, since Un ≤GJ T we get from Lemma 2.8.3 that Taint([T]) and can then satisfy
the final condition of rule T-In.

• Case Proc Repeat Input Un: similar to case Proc Output Un but also using rule
T-Rep.

• Case Proc Par: by the induction hypothesis we can immediately apply rule T-Par.

• Case Proc Res: we treat the different cases of T separately:

– T = Un: since [Un] = NPub(∅, ∅) we can apply the induction hypothesis and rule
T-NewN to obtain the desired result.

– T = SharedKey(T ′): by the fact that SKey([T ′]) = [SharedKey(T ′)] we can apply the
induction hypothesis and rule T-NewSk to obtain the desired result.

– T = KeyPair(T ′): by the restricted used of KeyPair we know that two next constructions
in P are let constructs follows by a process P ′. By the typing of P we get that E, x :
KeyPair(T ′), y : Encrypt Key(T ′), z : Encrypt Key(T ′) `GJ P

′ : es. By the fact that x 6∈
fn(P ′) Lemma 2.8.1 gives us that E, y : Encrypt Key(T ′), z : Encrypt Key(T ′) `GJ P

′ : es.
By induction hypothesis [E], y : [Encrypt Key(T ′)], z : [Encrypt Key(T ′)]; [es] ` [P ′]. Since
[Encrypt Key(T ′)] = EKey([T ′]) and [Decrypt Key(T ′)] = DKey([T ′]) we can apply rule
T-NewAk to obtain the desired result.

28 CHAPTER 2. TYPE-BASED VERIFICATION OF AUTHENTICITY

• Case Proc Split: follows by the induction hypothesis, Lemma 2.8.4, and rule T-Split.

• Case Proc Match: follows by the induction hypothesis, Lemma 2.8.4, and rule T-Match.

• Case Proc Case: cannot happen by our restrictions.

• Case Proc Symm: follows by the induction hypothesis, Lemma 2.8.4, and rule T-SDec.

• Case Proc Asymm: follows by the induction hypothesis, Lemma 2.8.4, and rule T-ADec.

• Case Proc Begin: follows by the induction hypothesis and rule T-Begin; if es does not
contain an end(M) we have to extend it first using T-CSub.

• Case Proc End: by our restrictions P = endL; stop and hence the results follows by rule
T-End.

• Case Proc Witness: cannot happen by our restrictions.

• Case Proc Trust: cannot happen by our restrictions.

• Case Proc Cast: by assumption we have Γ `GJ x : l Challenge esC and also Γ, x :
l Response esR `GJ P : fs. Lemma 2.8.4 then gives us that [Γ]; ∅ ` x : [l Challenge esC] and
the induction hypothesis that [Γ], x : [l Response esR]; [fs] ` [P]. Since [l Challenge esC] =
Nl([esC], ∅) we can apply rule T-Name to obtain [Γ]; [esC] + [esR] ` x : Nl(∅, [esR]). As
Nl(∅, [esR]) = [l Response esR] we can apply rule T-Let to obtain the desired result.

• Case Proc Check: by assumption we have Γ `GJ M : l Challenge esC , Γ `GJ N :
l Response esR, and Γ `GJ P : fs. Lemma 2.8.4 then gives us that [Γ]; ∅ ` M :
[l Challenge esC] and [Γ]; ∅ ` N : [l Response esC]. Since [l Challenge esC] = Nl([esC], ∅)
and [l Response esR] = Nl(∅, [esR]) we can satisfy the two first premises of rule T-Chk
using ϕ1 = ϕ2 = ∅. Now let ϕ3 = [es] = [fs]− ([esC] + [esR]), ϕ4 = [esC], and ϕ5 = [esR].
Since Γ `GJ P : fs we have by the induction hypothesis that [Γ];ϕ3 + ϕ4 + ϕ5 ` [P] and
we can finally apply rule T-Chk.

• Case Proc Challenge: follows by induction hypothesis and rule T-Res.

2.8.2 Limitations of Gordon and Jeffrey Type System

The converse of the result of the previous subsection does not hold, i.e. there are some realistic
protocols that are typable in our type system but not in the Gordon-Jeffrey type system. This
is a consequence of how nonces are typed: in their type system, nonce types are given two
kinds of types: ` Challenge es and ` Response es. This forces each nonce to be used in at most
two phases, first as a challenge, and then as a response. Our name types do not impose such
restriction. The rest of this section illustrates two cases of protocols typable in our type system
but not in Gordon and Jeffrey’s type system.

Generalised Needham-Schroeder-Lowe

The GNSL multi-party protocol [CM06] establishes mutual authentication between p parties
using a minimal number of messages. For p = 3 with participants named R0, R1, and R2, the
protocol looks as follows:

R0 -> R1: {|R0,R2,n0|}pk1
R1 -> R2: {|R0,R1,n0,n1|}pk2
R2 -> R0: {|R1,R2,n0,n1,n2|}pk0
R0 -> R1: {|n1,n2|}pk1
R1 -> R2: {|n2|}pk2

2.8. RELATION TO GORDON-JEFFREY TYPE SYSTEM 29

where ni is a nonce generated by Ri and pki the public key of a key pair belonging to Ri.
Participant R0 first sends his nonce n0 to R1 who appends his nonce n1 before forwarding

to R2. Likewise, R2 appends his nonce n2 before sending all nonces back to R0. For the second
round, R0 checks his nonce against the one received from R2 and sends n1 and n2 to R1. After
checking his nonce, R1 sends n2 to R2 who then also checks his nonce.

The authenticity property dictates that each party agrees with both of the other parties on
who the participants are, and is specified like so:

R0 -> R1: {|R0,R2,n0|}pk1
R1 begins (R0,R1,R2,01)

R1 begins (R0,R1,R2,21)

R1 -> R2: {|R0,R1,n0,n1|}pk2
R2 begins (R0,R1,R2,02)

R2 begins (R0,R1,R2,12)

R2 -> R0: {|R1,R2,n0,n1,n2|}pk0
R0 ends (R0,R1,R2,01)

R0 ends (R0,R1,R2,02)

R0 begins (R0,R1,R2,10)

R0 begins (R0,R1,R2,20)

R0 -> R1: {|n1,n2|}pk1
R1 ends (R0,R1,R2,10)

R1 ends (R0,R1,R2,12)

R1 -> R2: {|n2|}pk2
R2 ends (R0,R1,R2,20)

R2 ends (R0,R1,R2,21)

for some constants 01, . . . , 21. Note that for this property to hold we must assume that none
of the parties R0, R1, and R2 are compromised.

From the type system’s point of view, the authenticity property e.g. means that a end-
capability from both R1 and R2 must be transferred to R0 using one nonce n0. This is a
problem for Gordon and Jeffrey’s type system since capabilities can only be attached to nonces
once due to the fact that the Proc Cast typing rule will only accept a Challenge type and
additionally turn it into a Response type. Our type system does not have this limitation and
can type the protocol with the following initial types for the nonces:

n0 : NPr({end(. . . , 01), end(. . . , 21), end(. . . , 02)}, ∅)
n1 : NPr({end(. . . , 10), end(. . . , 12)}, ∅)
n2 : NPr({end(. . . , 20), end(. . . , 21)}, ∅)

so that the type of n0 is later changed by R1 to NPr({end(. . . , 02)}, ∅) and then by R2 to
NPr(∅, ∅). When n0 makes it back to R0 it can extract capabilities

{end(. . . , 01), end(. . . , 21), end(. . . , 02)}

and use end(. . . , 21) to discharge the obligation attached to n2. These changes of name types
cannot be expressed in Gordon and Jeffrey’s type system.

SOPH Handshakes

Another example of a protocol that is typable in our type system but not in Gordon and
Jeffrey’s is the SOPH handshake protocol in Figure 2.1. As mentioned in Example 2.3.1 in
Section 2.3.3, pkB should have type EKey(Un×NPub({end(0) 7→ 1}, ∅)), which corresponds
to Encrypt Key(x : Un,Pub Challenge [end(x)]) in Gordon and Jeffrey’s type system. The key

30 CHAPTER 2. TYPE-BASED VERIFICATION OF AUTHENTICITY

[[y]]x = x!y
[[(M1,M2)]]x = (νy1)(νy2)([[M1]]y1 | [[M2]]y2 | y1?z1.y2?z2.x!(z1, z2))

[[{M1}M2]]x = (νy1)(νy2)([[M1]]y1 | [[M2]]y2 | y1?z1.y2?z2.x!{z1}z2)

[[{|M1|}M2
]]x = (νy1)(νy2)([[M1]]y1 | [[M2]]y2 | y1?z1.y2?z2.x!{|z1|}z2)

[[0]] = 0
[[M1!M2]] = (νy1)(νy2)([[M1]]y1 | [[M2]]y2 | y1?z1.y2?z2.z1!z2)

[[M1?x.P]] = (νy1)([[M1]]y1 | y1?z1.z1?x. [[P]])

[[∗P]] = ∗[[P]]
[[(νx)P]] = (νx) [[P]]
[[(νsymx)P]] = (νsymx) [[P]]
[[(νasymx1, x2)P]] = (νasymx1, x2) [[P]]

[[check M1 is M2.P]] = (νy1)(νy2)([[M1]]y1 | [[M2]]y2 | y1?z1.y2?z2.check z1 is z2. [[P]])

[[split M is (x1, x2).P]] = (νy)([[M]]y | y?z.split z is (x1, x2). [[P]])

[[match M1 is (M2, x).P]] = (νy1)(νy2)([[M1]]y1 | [[M2]]y2 | y1?z1.y2?z2.match z1 is (z2, x). [[P]])

[[decrypt M1 is {x}M2 .P]] = (νy1)(νy2)([[M1]]y1 | [[M2]]y2 | y1?z1.y2?z2.decrypt z1 is {x}z2 . [[P]])

[[decrypt M1 is {|x|}M2
−1 .P]] = (νy1)(νy2)([[M1]]y1 | [[M2]]y2 | y1?z1.y2?z2.decrypt z1 is {|x|}z2−1 . [[P]])

[[beginM.P]] = beginM. [[P]]
[[endM]] = endM

Figure 2.12: Encoding of Messages and Processes

pkB is public, but the Pub predicate does not hold for this type in Gordon and Jeffrey’s
type system [GJ04].6 The discrepancy comes from the fact that Taint(NPub(ϕ, ∅)) holds for
arbitrary ϕ in our type system, but the corresponding condition Taint(Pub Challenge ϕ) holds
only for the case ϕ = ∅ in Gordon and Jeffrey’s. This seems to be caused by the difference in
the rules for typing check operations as discussed in the previous subsection. Because of the
difference, allowing Taint(Pub Challenge ϕ) to hold for arbitrary ϕ is unsound for Gordon and
Jeffrey’s type system.

2.9 Proofs of Lemmas

We here give proofs of the lemmas used for the soundness theorem.

2.9.1 Proof of Lemma 2.3.1

In Figure 2.12 we define an encoding of messages and processes used for the lemma: [[M]]x
translates a message M (that may not be well-typed) to a well-typed process that sends the
value of M on channel x, and [[P]] translates a process P to an equivalent, well-typed process.
We assume below that renaming is applied as necessary to avoid the name clashing.

By straightforward induction on the structures of M and P we can prove y1 : Un, . . . , yn :
Un, x : Un; ∅ ` [[M]]x : Un and z1 : Un, . . . , zm : Un; ∅ ` [[P]] where FN(M) = {y1, . . . , yn}
and FN(P) = {z1, . . . , zm}. It is also obvious that for any reduction sequence of P |Q there is
a corresponding for [[P]] |Q. Thus, the required result of the lemma holds for O′ = [[O]].

6Confirmed by email discussion with Gordon and Jeffrey.

2.9. PROOFS OF LEMMAS 31

Γ, x : τ ;ϕ `ex x : τ (ExT-Var)

Γ, n : N`(,);ϕ `ex n(ϕ1,ϕ2) : N`(ϕ1, ϕ2) (ExT-Name)

Γ;ϕ `ex V : N`(ϕ1, ϕ2)

Γ;ϕ+ ϕ′1 + ϕ′2 `ex addC(V, ϕ′1, ϕ
′
2) : N`(ϕ1 − ϕ′1, ϕ2 + ϕ′2)

(ExT-AddC)

Γ;ϕ1 `ex M1 : τ1 Γ;ϕ2 `ex M2 : [M1/0]τ2

Γ;ϕ1 + ϕ2 `ex (M1,M2) : τ1 × τ2
(ExT-Pair)

Γ;ϕ1 `ex M1 : τ1 Γ;ϕ2 `ex M2 : SKey(τ1)

Γ;ϕ1 + ϕ2 `ex {M1}M2 : N`(∅, ∅)
(ExT-SEnc)

Γ;ϕ1 `ex M1 : τ Γ;ϕ2 `ex M2 : EKey(τ)

Γ;ϕ1 + ϕ2 `ex {|M1|}M2
: N`(∅, ∅)

(ExT-AEnc)

Γ;ϕ `ex M : τ ′ τ ′ ≤ex τ

Γ;ϕ `ex M : τ
(ExT-Sub)

Figure 2.13: Typing Rules for Extended Messages

2.9.2 Proof of Lemma 2.3.2

To prove Lemma 2.3.2 we extend the syntax of processes and the typing rules in order to express
invariants preserved by reductions.

Extended Processes

We extend the syntax of processes in order to make it explicit what obligations and capabilities
are carried by each name, and when they are attached to the name. Below we distinguish
between (bound) variables, ranged over by x, and (free) names, ranged over by n. The sets of
extended messages and processes are given by:

M(ext. messages) ::= v | addC(M,ϕ1, ϕ2) | (M1,M2) | {M1}M2
| {|M1|}M2

V (values) ::= v | (V1, V2) | {V1}V2
| {|V1|}V2

v ::= x | n(ϕ1,ϕ2)

P (ext. processes) ::= 0 |M1!M2 |M?x.P | (P1 |P2) | ∗P
| (νx : τ)P | (νsymk : τ)P | (νasymk1 : τ1, k2 : τ2)P
| check M1 is M2.P
| split M is (x, y).P |match M1 is (M2, y).P
| decrypt M1 is {x}M2 .P | decrypt M1 is {|x|}M2

−1 .P
| beginV.P | endV

and the typing rules for extended processes are shown in Figure 2.13 and 2.14. In Figure 2.13,
≤ex is the least reflexive relation that satisfies the following rules:

Pub(τ) Taint(τ ′)

τ ≤ex τ
′ (ExSubT-PubTaint)

ϕ1 ≤ ϕ′1 ϕ2 ≥ ϕ′2
N`(ϕ1, ϕ2) ≤ex N`(ϕ

′
1, ϕ
′
2)

(ExSubT-Name)

Lemma 2.9.1. If τ1 ≤ex τ2 and τ2 ≤ex τ3 then τ1 ≤ex τ3.

32 CHAPTER 2. TYPE-BASED VERIFICATION OF AUTHENTICITY

Γ; ∅ `ex 0

Γ;ϕ1 `ex M1 : N`(∅, ∅) Γ;ϕ2 `ex M2 : τ Pub(τ)

Γ;ϕ1 + ϕ2 `ex M1!M2

(ExT-Out)

Γ1;ϕ1 `ex M : N`(∅, ∅) Γ2, x : τ ;ϕ2 `ex P Taint(τ)

Γ;ϕ1 + ϕ2 `ex M?x.P
(ExT-In)

Γ;ϕ1 `ex P1 Γ;ϕ2 `ex P2

Γ;ϕ1 + ϕ2 `ex P1 |P2

(ExT-Par)

Γ; ∅ `ex P
Γ; ∅ `ex ∗P

(ExT-Rep)

Γ, x : N`(ϕ1, ∅);ϕ+ {chk`(x, ϕ1) 7→ 1} `ex P
Γ;ϕ `ex (νx : N`(ϕ1, ∅))P

(ExT-NewN)

Γ, x : SKey(τ);ϕ `ex P
Γ;ϕ `ex (νsymx : SKey(τ))P

(ExT-NewSk)

Γ, k1 : EKey(τ), k2 : DKey(τ);ϕ `ex P
Γ;ϕ `ex (νasymk1 : EKey(τ), k2 : DKey(τ))P

(ExT-NewAk)

Γ;ϕ1 `ex M1 : N`(,) Γ;ϕ2 `ex M2 : SKey(τ) Γ, x : τ ;ϕ3 `ex P
Γ;ϕ1 + ϕ2 + ϕ3 `ex decrypt M1 is {x}M2

.P
(ExT-SDec)

Γ;ϕ1 `ex M1 : N`(,) Γ;ϕ2 `ex M2 : DKey(τ) Γ, x : τ ;ϕ3 `ex P
Γ;ϕ1 + ϕ2 + ϕ3 `ex decrypt M1 is {|x|}M2

−1 .P
(ExT-ADec)

Γ;ϕ1 `ex M1 : N`(,) Γ;ϕ2 `ex M2 : N`(∅, ϕ5) Γ;ϕ3 + ϕ4 + ϕ5 `ex P
Γ;ϕ1 + ϕ2 + ϕ3 + {chk`(M1, ϕ4)} `ex check M1 is M2.P

(ExT-Chk)

Γ;ϕ+ {end(V) 7→ 1} `ex P
Γ;ϕ `ex beginV.P

(Ext-Beg)

Γ;ϕ+ {end(V) 7→ 1} `ex endV
(ExT-End)

Γ;ϕ1 `ex M : τ1 × τ2 Γ, y : τ1, z : [y/0]τ2;ϕ2 `ex P
Γ;ϕ1 + ϕ2 `ex split M is (y, z).P

(ExT-Splt)

Γ;ϕ1 `ex M1 : τ1 × τ2 Γ;ϕ2 `ex M2 : τ1 Γ, z : [M2/0]τ2;ϕ3 `ex P
Γ;ϕ1 + ϕ2 + ϕ3 `ex match M1 is (M2, z).P

(ExT-Mtch)

Γ;ϕ′ `ex P ϕ′ ≤ ϕ
Γ;ϕ `ex P

(ExT-WeakCap)

Figure 2.14: Typing Rules for Extended Processes

2.9. PROOFS OF LEMMAS 33

Proof. By a case analysis on the rules used for deriving τ1 ≤ex τ2 and τ2 ≤ex τ3. If one of the
rules is reflexivity, the result follows immediately. There are four remaining cases.

• Case ExSubT-PubTaint-ExSubT-PubTaint: In this case Pub(τ1) and Taint(τ3), from
which the result follows by ExSubT-PubTaint.

• Case ExSubT-Name-ExSubT-Name: In this case τi = N`(ϕi, ϕ
′
i) for i ∈ {1, 2, 3} with

ϕ1 ≤ ϕ2 ≤ ϕ3 and ϕ′1 ≥ ϕ′2 ≥ ϕ′3. Thus, the result follows by ExSubT-Name.

• Case ExSubT-PubTaint-ExSubT-Name: In this case we have τi = N`(ϕi, ϕ
′
i) for i ∈

{2, 3} with Pub(τ1), Taint(N`(ϕ2, ϕ
′
2)), ϕ2 ≤ ϕ3, and ϕ′2 ≥ ϕ3. If ` = Pub then ϕ′2 = ∅,

which implies ϕ3 = ∅. Thus, we have ` = Pub ⇒ ϕ3 = ∅, which implies Taint(τ3). The
required result is obtained by using ExSubT-PubTaint.

• Case ExSubT-Name-ExSubT-PubTaint: In this case we have τi = N`(ϕi, ϕ
′
i) for

i ∈ {1, 2} with Taint(τ3), Pub(N`(ϕ2, ϕ
′
2), ϕ1 ≤ ϕ2, and ϕ′1 ≥ ϕ2. By the condition

Pub(N`(ϕ2, ϕ
′
2)) we have ` = Pub and ϕ2 = ∅, which implies ϕ1 = ∅. Thus, we have

Pub(τ1). The required result follows by ExSubT-PubTaint.

The following lemma guarantees that the subsumption rule (ExT-Sub) only increases obli-
gations, and decreases capabilities of a name type, unless the qualification of the name type is
changed from Pub to Pr.

Lemma 2.9.2. If N`(ϕ1, ϕ2) ≤ex N`′(ϕ
′
1, ϕ
′
2) then either ` = Pub ∧ `′ = Pr ∧ ϕ1 = ∅ or

` = `′ ∧ ϕ1 ≤ ϕ′1 ∧ ϕ2 ≥ ϕ′2.

Proof. In the case where N`(ϕ1, ϕ2) ≤ex N`′(ϕ
′
1, ϕ
′
2) was derived using rule ExSubT-Name we

immediately have that the second set of conditions are satisfied. If rule ExSubT-PubTaint
was used instead we first note that in this case ` = Pub must hold. Then, if `′ = Pub
(respectively Pr) we have that the second (respectively first) set of conditions are satisfied.

Extended Operational Semantics

The set of message reduction contexts for messages, ranged over by Cm, is given by:

Cm ::= [] | addC(Cm, ϕ1, ϕ2) | (Cm,M) | (V,Cm) | {Cm}M | {V }Cm
| {|Cm|}M | {|V |}Cm

and the message reduction relation by rules:

(ϕ+ ϕ′1 + ϕ′2, Cm[addC(n(ϕ1,ϕ2), ϕ′1, ϕ
′
2)]) −→ex (ϕ,Cm[n(ϕ1−ϕ′1,ϕ2+ϕ′2)])

(ϕ,Cm[addC(n(ϕ1,ϕ2), ϕ′1, ϕ
′
2)]) −→ex Error if ϕ′1 + ϕ′2 6≤ ϕ

The extended reduction relation 〈Ψ, E,Γ,K, ϕ〉 −→ex 〈Ψ′, E′,Γ′,K′, ϕ′〉 is defined by the
rules in Figure 2.15. Here, Ψ is a multiset of extended processes, E is a set of messages (that
represent the begin-events that have occurred but have not been matched by corresponding
end-events), Γ is a set of names that have been created (with type assumptions), K is a set of
pairs of decryption and encryption keys, and ϕ is a capability. In the figure, C ranges over the

34 CHAPTER 2. TYPE-BASED VERIFICATION OF AUTHENTICITY

(ϕ,M) −→ex (ϕ′,M ′)

〈Ψ] {C[M]}, E,Γ,K, ϕ〉 −→ex 〈Ψ] {C[M ′]}, E,Γ,K, ϕ′〉
(ExR-M)

(ϕ,M) −→ex Error

〈Ψ] {C[M]}, E,Γ,K, ϕ〉 −→ex Error
(ExR-M-Er)

〈Ψ] {n(,)?y.P, n(,)!V }, E,Γ,K, ϕ〉 −→ex 〈Ψ] {[V/y]P}, E,Γ,K, ϕ〉 (ExR-Com)

〈Ψ] {P |Q}, E,Γ,K, ϕ〉 −→ex 〈Ψ] {P,Q}, E,Γ,K, ϕ〉 (ExR-Par)

〈Ψ] {∗P}, E,Γ,K, ϕ〉 −→ex 〈Ψ] {∗P, P}, E,Γ,K, ϕ〉 (ExR-Rep)

〈Ψ] {(νx : N`(ϕ1, ∅))P}, E,Γ,K, ϕ〉 −→ex

〈Ψ] {[n(ϕ1,∅)/x]P}, E,Γ ∪ {n : N`(ϕ1, ∅)},K, ϕ+ {chk`(n, ϕ1)}〉 (n /∈ dom(Γ))
(ExR-NewN)

〈Ψ] {(νsymx : τ)P}, E,Γ,K, ϕ〉 −→ex

〈Ψ] {[k/x]P}, E,Γ ∪ {k : τ},K, ϕ〉 (k /∈ dom(Γ))
(ExR-NewSk)

〈Ψ] {(νasymx : τ1, y : τ2)P}, E,Γ,K, ϕ〉 −→ex

〈Ψ] {[k1/x, k2/y]P}, E,Γ ∪ {k1 : τ1, k2 : τ2},K ∪ {(k1, k2)}, ϕ〉 (k1, k2 /∈ dom(Γ))
(ExR-NewAk)

〈Ψ] {check n(,) is n(∅,ϕ1).P}, E,Γ,K, ϕ+ {chk`(n, ϕ2)}〉 −→ex

〈Ψ] {P}, E,Γ,K, ϕ+ ϕ1 + ϕ2〉
(ExR-Chk)

(ϕ0 6= ∅) ∨ ¬∃ϕ2, `.(chk`(n, ϕ2) ∈ ϕ)

〈Ψ] {check n(,) is n(ϕ0,ϕ1).P}, E,Γ,K, ϕ〉 −→ex Error
(ExR-Chk-Er)

〈Ψ] {split (V,W) is (x, y).P}, E,Γ,K, ϕ〉 −→ex 〈Ψ] {[V/x,W/y]P}, E,Γ,K, ϕ〉
(ExR-Splt)

〈Ψ] {match (V,W) is (V, z).P}, E,Γ,K, ϕ〉 −→ex 〈Ψ] {[W/z]P}, E,Γ,K, ϕ〉 (ExR-Mtch)

〈Ψ] {decrypt {V }k is {x}k.P}, E,Γ,K, ϕ〉 −→ex 〈Ψ] {[V/x]P}, E,Γ,K, ϕ〉 (ExR-SDec)

(k1, k2) ∈ K
〈Ψ] {decrypt {|V |}k1 is {|x|}k2−1 .P}, E,Γ,K, ϕ〉 −→ex 〈Ψ] {[V/x]P}, E,Γ,K, ϕ〉

(ExR-ADec)

〈Ψ] {beginV.P}, E,Γ,K, ϕ〉 −→ex 〈Ψ] {P}, E] {V },Γ,K, ϕ+ {end(V)}〉 (ExR-Beg)

〈Ψ] {endV }, E] {V },Γ,K, ϕ+ {end(V)}〉 −→ex 〈Ψ, E,Γ,K, ϕ〉 (ExR-End)

(V 6∈ E) ∨ (ϕ(end(V)) < 1)

〈Ψ] {endV }, E,Γ,K, ϕ〉 −→ex Error
(ExR-End-Er)

Figure 2.15: Extended Operational Semantics

set of process reduction contexts given by:

C ::= M1!M2 | v!Cm |M?x.P | (P1 |P2)
| check Cm is M.P | check V is Cm.P
| split Cm is (x, y).P
|match Cm is (M,y).P |match V is (Cm, y).P
| decrypt Cm is {x}M2

.P | decrypt V is {x}Cm
.P

| decrypt Cm is {|x|}M2
−1 .P

| decrypt V is {|x|}Cm
−1 .P

2.9. PROOFS OF LEMMAS 35

Proof of Lemma

For an extended process P we write Erase(P) for the process obtained by removing type
annotations and “addC”.

Lemma 2.9.3. If Γ;ϕ ` P then there exists P ′ such that Γ;ϕ `ex P ′ and Erase(P ′) = P .

Proof. Easy induction on the derivation of Γ;ϕ ` P .

Lemma 2.9.4. If 〈P, ∅, ∅, ∅, ∅〉 6−→∗ex Error then Erase(P) is safe.

Proof. We show contraposition. Suppose Erase(P) is not safe, i.e. 〈Erase(P), ∅, ∅, ∅〉 −→∗
Error. Then 〈P, ∅, ∅, ∅, ∅〉 −→∗ex Error follows from the facts: (i) if 〈Erase(P), E, dom(Γ),K〉 −→
〈Q,E′, N ′,K′〉, then either 〈P,E,Γ,K, ϕ〉 −→ex 〈P ′, E′,Γ′,K′, ϕ′〉 with Erase(P ′) = P and
dom(Γ′) = N ′ or 〈P,E,Γ,K, ϕ〉 −→ex Error; and (ii) if 〈Erase(P), E, dom(Γ),K〉 −→ Error,
then 〈P,E,Γ,K, ϕ〉 −→∗ex Error. (These facts follow by an easy case analysis on the rule used
for deriving 〈Erase(P), E, dom(Γ),K〉 −→ 〈Q,E′, N ′,K′〉 or 〈Erase(P), E, dom(Γ),K〉 −→
Error.)

Lemma 2.9.5. If ∅; ∅ `ex P then 〈P, ∅, ∅, ∅, ∅〉 6−→∗ex Error.

To show Lemma 2.9.5 we define a typing rule for run-time configurations (of the form
〈Ψ, E,Γ,K, ϕ〉) and show (i) the typing is preserved (Lemma 2.9.9) and (ii) a well-typed con-
figuration is not immediately reduced to Error (Lemma 2.9.6).

In order to express a necessary invariant we introduce a reduction relation (ϕ,N) =⇒Ψ

(ϕ′, N ′) used to collect all the capabilities, including those attached to names, and defined by:

n(ϕ3,ϕ4) occurs in Ψ

(ϕ1 + {chk`(n, ϕ2) 7→ 1}, N) =⇒Ψ (ϕ1 + (ϕ2 − ϕ3) + ϕ4, N ∪ {n})

where the second component N is a set of names keeping track of the names already checked.
We write ConsistentCap(E,ϕ,Ψ) if, whenever (ϕ, ∅) =⇒∗Ψ (ϕ′, N), the following condi-

tions hold: (i) E(V) ≥ ϕ′(end(V)) for every V , and (ii) for every n, if ϕ′(chk`(n, ϕ2)) ≥ 1,
then n 6∈ N . The condition (i) ensures that the end capabilities estimated by the type system
(i.e. ϕ′) is at most those that are actually present (E). The condition (ii) ensures that there is
always at most one check capability for each name.

Let the typing rule for run-time configurations be given by:

Γ;ϕ `ex P1 | · · · |Pm
ConsistentCap(E,ϕ, {P1, . . . , Pm})

∀(k1, k2) ∈ K.∃τ.(Γ(k1) = EKey(τ) ∧ Γ(k2) = DKey(τ))
∀n, `, `′.(Γ(n) = N`(,)∧

(“chk`′(n,) occurs in some Pi or ϕ”)⇒ ` = `′)

`ex 〈{P1, . . . , Pm}, E,Γ,K, ϕ〉

Lemma 2.9.6 (lack of immediate error). If `ex 〈Ψ, E,Γ,K, ϕ〉 then 〈Ψ, E,Γ,K, ϕ〉6−→exError.

Proof. Suppose `ex 〈Ψ, E,Γ,K, ϕ〉 holds. There are three rules that may yield Error: ExR-M-Er,
ExR-Chk-Er, and ExR-End-Er. We show below that none of those rules are applicable.

• Case ExR-M-Er: In this case Ψ = Ψ′]{C[M]} with (ϕ,M) −→ex Error. By the typing
rules it must be the case that Γ;ϕ′ `ex M : τ and ϕ′ ⊆ ϕ for some ϕ′ and τ . By the typing
rules and reduction rules for messages, (ϕ,M) −→ex Error cannot hold.

36 CHAPTER 2. TYPE-BASED VERIFICATION OF AUTHENTICITY

• Case ExR-Chk-Er: In this case Ψ = Ψ′]{check n(,) is n(ϕ0,ϕ1).P}. By the assumption
`ex 〈Ψ, E,Γ,K, ϕ〉 there must exist ϕ′ such that ϕ′ ≤ ϕ and Γ;ϕ′ `ex check n(,) is n(ϕ0,ϕ1).P .
By the typing rules we have:

Γ;ϕ2 `ex n(,) : N`(,)
Γ;ϕ3 `ex n(ϕ0,ϕ1) : N`(∅, ϕ5)
Γ;ϕ4 + ϕ5 + ϕ6 `ex P
ϕ′ ≥ ϕ2 + ϕ3 + ϕ4 + {chk`(n, ϕ6)}

and by the second condition that ϕ0 = ∅. (Note that the judgment must have been derived
from ExT-Name, followed by a possible application of ExT-Sub. ExT-Name assigns
the type N`′(ϕ0, ϕ1), and by Lemma 2.9.1 we must have N`′(ϕ0, ϕ1) ≤ex N`(∅, ϕ5). By
Lemma 2.9.2 we have ϕ0 = ∅. Thus, the premise of ExR-Chk-Er does not hold.

• Case ExR-End-Er: In this case Ψ = Ψ′] {endV } with (V 6∈ E) ∨ (ϕ(end(V)) < 1).
If V 6∈ E then by the assumption `ex 〈Ψ, E,Γ,K, ϕ〉 and the second condition on the
configuration typing we have (ϕ(end(V)) < 1). By the assumption `ex 〈Ψ, E,Γ,K, ϕ〉,
however, we also have Γ;ϕ′ `ex endV for some ϕ′ ≤ ϕ. By the typing rule for endV it
must be the case that (ϕ′(end(V)) ≥ 1), hence a contradiction.

Lemma 2.9.7. If Γ;ϕ `ex V : τ then Γ; ∅ `ex V : τ .

Proof. Straightforward induction on the derivation of Γ;ϕ `ex V : τ . (Note that by the syntax
of values, V does not contain “addC”.)

Lemma 2.9.8 (substitution). If Γ1; ∅ `ex V : τ and Γ1, x:τ,Γ2;ϕ `ex P then Γ1, [V/x]Γ2; [V/x]ϕ `ex
[V/x]P .

Proof. A derivation of Γ1, [V/x]Γ2; [V/x]ϕ `ex [V/x]P is obtained from Γ1, x : τ,Γ2;ϕ `ex P by
replacing each leaf of the form Γ1, x:τ,Γ′2;ϕ′ `ex x:τ (where Γ′2 ⊇ Γ2) with Γ1, [V/x]Γ2; [V/x]ϕ′ `ex
V : τ (which is obtained by weakening and ExT-WeakCap).

Lemma 2.9.9 (type preservation). If `ex 〈Ψ, E,Γ,K, ϕ〉 and 〈Ψ, E,Γ,K, ϕ〉 −→ex 〈Ψ′, E′,Γ′,K′, ϕ′〉
then `ex 〈Ψ′, E′,Γ′,K′, ϕ′〉.

Proof. Suppose `ex 〈Ψ, E,Γ,K, ϕ〉 and 〈Ψ, E,Γ,K, ϕ〉 −→ex 〈Ψ′, E′,Γ′,K′, ϕ′〉. We show
`ex 〈Ψ′, E′,Γ′,K′, ϕ′〉 by case analysis on the rule used for deriving 〈Ψ, E,Γ,K, ϕ〉 −→ex

〈Ψ′, E′,Γ′,K′, ϕ′〉. By abuse of notation we often write Γ;ϕ ` {P1, . . . , Pk} for Γ;ϕ ` P1 | · · · |Pk.

• Case ExR-M: In this case Ψ = Ψ1] {C[M]} and Ψ′ = Ψ1] {C[M ′]} with M =
Cm[addC(n(ϕ1,ϕ2), ϕ′1, ϕ

′
2)], M ′ = Cm[n(ϕ1−ϕ′1,ϕ2+ϕ′2)], and ϕ = ϕ′ + ϕ′1 + ϕ′2. We also

have E′ = E, Γ′ = Γ, and K′ = K. By the assumption `ex 〈Ψ, E,Γ,K, ϕ〉, Γ;ϕ ` Ψ1]
{C[Cm[addC(n(ϕ1,ϕ2), ϕ′1, ϕ

′
2)]]} holds, which must have been derived from Γ;ϕ′1 +ϕ′2 `ex

addC(n(ϕ1,ϕ2), ϕ′1, ϕ
′
2) : N`′(ϕ

′′
1 −ϕ′1, ϕ′′2 +ϕ′2), where Γ(n) = N`(,) and N`(ϕ1, ϕ2) ≤ex

N`′(ϕ
′′
1 , ϕ

′′
2). By Lemma 2.9.2 we have either ` = Pub∧`′ = Taint∧ϕ1 = ∅ or ` = `′∧ϕ1 ≤

ϕ′′1 ∧ ϕ2 ≥ ϕ′′2 . In both cases we have N`(ϕ1 − ϕ′1, ϕ2 + ϕ′2) ≤ex N`′(ϕ
′′
1 − ϕ′1, ϕ′′2 + ϕ′2),

which implies Γ; ∅ `ex n(ϕ1−ϕ′1,ϕ2+ϕ′2) : N`′(ϕ
′′
1 − ϕ′1, ϕ′′2 + ϕ′2). Thus, we have

Γ;ϕ′ ` Ψ1] {C[Cm[n(ϕ1−ϕ′1,ϕ2+ϕ′2)]]}.

It remains to check ConsistentCap(E,ϕ′,Ψ′). To check this it suffices to observe that
whenever (ϕ′, ∅) =⇒∗Ψ′ (ϕ′3, ϕ

′
4), we can construct a corresponding sequence (ϕ, ∅) =⇒∗Ψ

(ϕ3, ϕ4) such that ϕ′3 + ϕ′4 ≤ ϕ3 + ϕ4. (The only reduction step (ϕ′, ∅) =⇒∗Ψ′ (ϕ′3, ϕ
′
4)

2.9. PROOFS OF LEMMAS 37

introduces more capabilities is a reduction on chk`(n,), but that can happen at most
once, and the difference is at most ϕ′1 + ϕ′2.)

• Case ExR-Com: In this case Ψ = Ψ1]{n(,)?y.P, n(,)!V } and Ψ = Ψ1]{[V/y]P}, with
E′ = E, Γ′ = Γ, K′ = K, and ϕ′ = ϕ. By the assumption `ex 〈Ψ, E,Γ,K, ϕ〉 we have:

Γ;ϕ1 `ex Ψ1

Γ;ϕ2 `ex n(,) : N`(∅, ∅)
Γ;ϕ3 `ex V : τ
Pub(τ)
Γ;ϕ4 `ex n(,) : N`′(∅, ∅)
Γ, y : τ ′;ϕ5 `ex P
Taint(τ ′)
ϕ ≥ ϕ1 + ϕ2 + ϕ3 + ϕ4 + ϕ5

By the conditions Γ;ϕ3 `ex V : τ , Pub(τ), and Taint(τ ′), we have Γ;ϕ3 `ex V :
τ ′. By Lemma 2.9.7 Γ; ∅ `ex V : τ ′ holds. Thus, by using the substitution lemma
(Lemma 2.9.8) we obtain Γ;ϕ5 `ex [V/y]P . By using ExT-Par and ExT-WeakCap
we obtain Γ;ϕ `ex Ψ′ as required. ConsistentCap(E,ϕ,Ψ′) follows immediately from
ConsistentCap(E,ϕ,Ψ).

• Case ExR-Par, ExR-Rep: Trivial.

• Case ExR-NewN: In this case Ψ = Ψ1]{(νx:N`(ϕ1, ∅))P} and Ψ′ = Ψ1]{[n(ϕ1,∅)/x]P},
with E′ = E, Γ′ = (Γ, n : N`(ϕ1, ∅)), K′ = K, and ϕ′ = ϕ + {chk`(n, ϕ1) 7→ 1}. By
the assumption `ex 〈Ψ, E,Γ,K, ϕ〉 and rule ExT-NewN we have: Γ;ϕ2 `ex Ψ1 and
Γ, x : N`(ϕ1, ∅);ϕ3 + {chk`(x, ϕ1) 7→ 1} `ex P , with ϕ ≥ ϕ2 + ϕ3. By the substitution
lemma (Lemma 2.9.8) we have

Γ′;ϕ3 + {chk`(n, ϕ1) 7→ 1} `ex [n(ϕ1,∅)/x]P.

Thus, by using ExT-Par and ExT-WeakCap we obtain Γ′;ϕ′ `ex Ψ′ as required.
ConsistentCap(E′, ϕ′,Ψ′) follows immediately from ConsistentCap(E,ϕ,Ψ).

• Case ExR-NewSk: Similar to the case for ExR-New.

• Case ExR-NewAk: Similar to the case for ExR-New.

• Case ExR-Chk: In this case Ψ = Ψ1] {check n(,) is n(∅,ϕ1).P} and Ψ′ = Ψ1] {P},
with E′ = E, Γ′ = Γ, K′ = K, ϕ = ϕ0 + {chk`(n, ϕ2)}, and ϕ′ = ϕ0 + ϕ1 + ϕ2.

By the assumption `ex 〈Ψ, E,Γ,K, ϕ〉 we have:

Γ;ϕ3 `ex Ψ1

Γ;ϕ4 `ex n(,) : N`(,)
Γ;ϕ5 `ex n(ϕ7,ϕ8) : N`(∅, ϕ1)

(with N`(ϕ7, ϕ8) ≤ex N`(∅, ϕ1))
Γ;ϕ6 + ϕ1 + ϕ2 `ex P
ϕ0 ≥ ϕ3 + ϕ4 + ϕ5 + ϕ6

Therefore, we have Γ;ϕ3+ϕ6+ϕ1+ϕ2 `ex Ψ′. By ExT-WeakCap we obtain Γ;ϕ′ `ex Ψ′.
It remains to check ConsistentCap(E,ϕ′,Ψ′).

Next, we show that ϕ7 = ∅ and ϕ8 ≥ ϕ1. By the condition N`(ϕ7, ϕ8) ≤ex N`(∅, ϕ1) either
(ϕ7 = ∅) ∧ (ϕ8 = ϕ1) or Pub(N`(ϕ7, ϕ8)) ∧ Taint(N`(∅, ϕ1)) holds. In the latter case
` = Pub and ϕ7 = ϕ1 = ∅. Thus, we have ϕ7 = ∅ and ϕ8 ≥ ϕ1 as required.

Since (ϕ, ∅) =⇒Ψ (ϕ0+ϕ2+ϕ′1, {chk`(n, ϕ2)}) for some ϕ′1 ≥ ϕ8 ≥ ϕ1, ConsistentCap(E,ϕ′,Ψ′)
follows from ConsistentCap(E,ϕ,Ψ).

38 CHAPTER 2. TYPE-BASED VERIFICATION OF AUTHENTICITY

• Case ExR-Splt: In this case Ψ = Ψ1] {split (V,W) is (x, y).P} and Ψ′ = Ψ1]
{[V/x,W/y]P}, with E′ = E, Γ′ = Γ, K′ = K, and ϕ′ = ϕ. By the assumption
`ex 〈Ψ, E,Γ,K, ϕ〉 we have:

Γ;ϕ1 `ex Ψ1

Γ;ϕ2 `ex V : τ1
Γ;ϕ3 `ex W : [V/0]τ2
Γ, x : τ1, y : [x/0]τ2;ϕ4 `ex P
ϕ ≥ ϕ1 + ϕ2 + ϕ3 + ϕ4

Here, ϕ4 does not contain x and y. Without loss of generality we also assume that x, y
does not occur in V,W . By applying the substitution lemma (Lemma 2.9.8) we have
Γ, y : [V/0]τ2;ϕ4 `ex [V/x]P . By applying the substitution lemma again we get: Γ;ϕ4 `ex
[V/x,W/y]P . Thus, we obtain Γ′;ϕ′ `ex Ψ′ as required. ConsistentCap(E,ϕ′,Ψ′)
follows from ConsistentCap(E,ϕ,Ψ).

• Case ExR-Mtch: Similar to the case ExR-Splt above.

• Case ExR-SDec: Similar to the case ExR-ADec below.

• Case ExR-ADec: In this case Ψ = Ψ1] {decrypt {|V |}k1 is {|x|}k2−1 .P} and Ψ′ =
Ψ1] {[V/x]P}, with E′ = E, Γ′ = Γ, K′ = K, and ϕ′ = ϕ. By the assumption `ex
〈Ψ, E,Γ,K, ϕ〉 we have:

Γ;ϕ1 `ex Ψ1

Γ;ϕ2 `ex k1 : EKey(τ1)
Γ;ϕ3 `ex V : τ1
Γ;ϕ4 `ex k2 : DKey(τ2)
Γ, x : τ2;ϕ5 `ex P
ϕ ≥ ϕ1 + ϕ2 + ϕ3 + ϕ4 + ϕ5

Γ(k1) = EKey(τ)
Γ(k2) = DKey(τ)

By the 2nd, 4th, and the last two conditions, we have EKey(τ) ≤ex EKey(τ1) and
DKey(τ) ≤ex DKey(τ2). EKey(τ) ≤ex EKey(τ1) implies τ = τ1 or Pub(EKey(τ)) ∧
Taint(EKey(τ1)), which implies τ = τ1 or Taint(τ) ∧Pub(τ1). Thus, we have τ1 ≤ex τ .
Similarly, DKey(τ) ≤ex DKey(τ2) implies τ ≤ex τ2. As the subtyping relation is transitive
(Lemma 2.9.1) we have τ1 ≤ex τ2. Thus, by using ExT-Sub and the substitution lemma
(Lemma 2.9.8) we obtain Γ;ϕ5 `ex [V/x]P . By Ext-WeakCap we obtain Γ;ϕ `ex Ψ′ as
required.

ConsistentCap(E′, ϕ′,Ψ′) follows immediately from ConsistentCap(E,ϕ,Ψ).

• Case ExR-Beg: In this case Ψ = Ψ1] {beginV.P} and Ψ′ = Ψ1] {P}, with E′ =
E] {end(V)}, Γ′ = Γ, K′ = K, and ϕ′ = ϕ + {end(V) 7→ 1}. By the assumption
`ex 〈Ψ, E,Γ,K, ϕ〉 we have:

Γ;ϕ1 `ex Ψ1

Γ;ϕ2 + {end(V) 7→ 1} `ex P
ϕ ≥ ϕ1 + ϕ2

Thus, we have Γ;ϕ′ `ex Ψ′ as required. ConsistentCap(E′, ϕ′,Ψ′) follows immediately
from ConsistentCap(E,ϕ,Ψ).

• Case ExR-End: In this case Ψ = Ψ′]{endV } with E = E′]{end(V)}, Γ′ = Γ, K′ = K,

2.10. BIBLIOGRAPHY 39

and ϕ = ϕ′ + {end(V) 7→ 1}. By the assumption `ex 〈Ψ, E,Γ,K, ϕ〉 we have:

Γ;ϕ1 `ex Ψ′

Γ;ϕ2 + {end(V) 7→ 1} `ex endV
ϕ ≥ ϕ1 + ϕ2 + {end(V) 7→ 1}

Thus, we have Γ;ϕ `ex Ψ′ as required. ConsistentCap(E′, ϕ′,Ψ′) follows immediately
from ConsistentCap(E,ϕ,Ψ).

Lemma 2.3.2 now follows as an immediate corollary of the lemmas above.

Proof of Lemma 2.3.2 Suppose ∅; ∅ ` P . By Lemma 2.9.3 there exists an extended process
P ′ such that ∅; ∅ `ex P ′ and Erase(P ′) = P . By Lemma 2.9.5 〈P ′, ∅, ∅, ∅, ∅〉 6−→∗ex Error. Thus,
by Lemma 2.9.4 and P = Erase(P ′) we get that P is safe. �

2.10 Bibliography

[Aba99] Mart́ın Abadi. Secrecy by typing in security protocols. JACM, 46(5):749–786, 1999.

[AG99] Mart́ın Abadi and Andrew D. Gordon. A Calculus for Cryptographic Protocols:
The Spi Calculus. Information and Computation, 148(1):1–70, January 1999.

[BBF+08] Jesper Bengtson, Karthikeyan Bhargavan, Cédric Fournet, Andrew D. Gordon, and
Sergio Maffeis. Refinement types for secure implementations. In Proceedings of the
21st IEEE Computer Security Foundations Symposium (CSF 2008), pages 17–32,
2008.

[BFG10] Karthikeyan Bhargavan, Cédric Fournet, and Andrew D. Gordon. Modular veri-
fication of security protocol code by typing. In Proceedings of POPL 2010, pages
445–456, 2010.

[BFM05] Michele Bugliesi, Riccardo Focardi, and Matteo Maffei. Analysis of typed analyses of
authentication protocols. In 18th IEEE Computer Security Foundations Workshop,
(CSFW-18 2005), pages 112–125, 2005.

[BFM07] Michele Bugliesi, Riccardo Focardi, and Matteo Maffei. Dynamic types for authen-
tication. Journal of Computer Security, 15(6):563–617, 2007.

[Bla02] Bruno Blanchet. From Secrecy to Authenticity in Security Protocols. In 9th Interna-
tional Static Analysis Symposium (SAS’02), volume 2477 of LNCS, pages 342–359.
Springer-Verlag, 2002.

[CM06] Cas J. F. Cremers and Sjouke Mauw. A family of multi-party authentication proto-
cols - extended abstract. In Proceedings of WISSEC’06, 2006.

[Cre08] Cas J. F. Cremers. Unbounded verification, falsification, and characterization of
security protocols by pattern refinement. In Proceedings of ACM Conference on
Computer and Communications Security (CCS 2008), pages 119–128, 2008.

[FGM07] Cédric Fournet, Andrew D. Gordon, and Sergio Maffeis. A type discipline for au-
thorization policies. ACM Trans. Prog. Lang. Syst., 29(5), 2007.

40 CHAPTER 2. TYPE-BASED VERIFICATION OF AUTHENTICITY

[FMP05] Riccardo Focardi, Matteo Maffei, and Francesco Placella. Inferring authentication
tags. In Proceedings of the Workshop on Issues in the Theory of Security (WITS
2005), pages 41–49, 2005.

[GJ02a] Andrew D. Gordon and Alan Jeffrey. Types and effects for asymmetric cryptographic
protocols. Technical Report MRS-TR-2002-31, Microsoft Research, August 2002.

[GJ02b] Andrew D. Gordon and Alan Jeffrey. Typing one-to-one and one-to-many corre-
spondences in security protocols. In Software Security – Theories and Systems,
Mext-NSF-JSPS International Symposium (ISSS 2002), volume 2609 of LNCS, pages
263–282. Springer-Verlag, 2002.

[GJ03] Andrew D. Gordon and Alan Jeffrey. Authenticity by typing for security protocols.
Journal of Computer Security, 11(4):451–520, 2003.

[GJ04] Andrew D. Gordon and Alan Jeffrey. Types and effects for asymmetric cryptographic
protocols. Journal of Computer Security, 12(3-4):435–483, 2004.

[HJ04] Christian Haack and Alan Jeffrey. Cryptyc. http://www.cryptyc.org/, 2004.

[KK07] Daisuke Kikuchi and Naoki Kobayashi. Type-based verification of correspondence
assertions for communication protocols. In Proceedings of APLAS 2007, volume
4807 of LNCS, pages 191–205. Springer-Verlag, 2007.

[KK09] Daisuke Kikuchi and Naoki Kobayashi. Type-based automated verification of au-
thenticity in cryptographic protocols. In Proceedings of ESOP 2009, volume 5502 of
LNCS, pages 222–236. Springer-Verlag, 2009.

[PS96] Benjamin Pierce and Davide Sangiorgi. Typing and subtyping for mobile processes.
Mathematical Structures in Computer Science, 6(5):409–454, 1996.

[WL93] Thomas Y.C. Woo and Simon S. Lam. A semantic model for authentication pro-
tocols. In RSP: IEEE Computer Society Symposium on Research in Security and
Privacy, pages 178–193, 1993.

http://www.cryptyc.org/

Chapter 3

Privacy for Anonymous Location Based
Services

We propose a framework for formal analysis of privacy in location based services such as anony-
mous electronic toll collection. We give a formal definition of privacy, and apply it to the VPriv
scheme for vehicular services. We analyse the resulting model using the ProVerif tool, conclud-
ing that our privacy property holds only if certain conditions are met by the implementation.
Our analysis includes some novel features such as the formal modelling of privacy for a protocol
that relies on interactive zero-knowledge proofs of knowledge and list permutations.

3.1 Introduction

The sophistication and quantity of embedded devices in modern vehicles is growing rapidly.
Ad-hoc wireless networking is envisioned as one of the next big steps, with various car-to-
infrastructure and car-to-car communication applications planned [Sta06, DINI05]. Many of
these applications are location-based, and providing the precise position of the vehicle is essen-
tial to the quality of the service provided. As these applications are deployed, privacy concerns
naturally emerge.

Some of the location-based services already in widespread use today, such as RFID tag based
electronic toll collection systems, offer little privacy protection to drivers [Law08]. By using
the same fixed identifying tag whenever they have to pay a toll fee, it becomes trivial to later
trace the routes of any driver given the database of payments. Little is gained by using a fixed
random tag instead of a real-world identifier such as the license plate. Although the tolling
database may not be publicly available, the privacy of drivers is still at risk of exploitation from
within the toll company.

The more widespread employment of such systems combined with the possibility of moving
them to the emerging general framework for network communication, increases the need for
privacy oriented systems. In this chapter, we bring the privacy analysis of location-based
services into the world of formal methods, leveraging previous work on privacy for vehicular
mix-zones [DDS10], electronic voting [KR05, DRS08], and RFID tags [ACRR10, BCdH10]. In
particular, we concentrate on VPriv [BBP09], a proposed scheme for building location-based
services using zero-knowledge techniques, designed to ensure that the paths of drivers are not
revealed to the service providers, while nonetheless preventing drivers from reporting fake paths.
We use the formal notion of indistinguishability to formalise privacy and carry out the analysis
with the aid of the protocol analysis tool ProVerif [Bla04]. In particular, we will use a notion of
trace equivalence, after explaining why the more usual notion of observational equivalence is not
suitable in this setting. To the best of our knowledge this is the first use of the tool for analysing

41

42 CHAPTER 3. PRIVACY FOR ANONYMOUS LOCATION BASED SERVICES

a protocol that relies on interactive zero-knowledge proofs of knowledge. Note that contrary to
non-interactive ones that can be abstracted by means of an appropriate equational theory (see
e.g. [BMU08]), interactive proofs cannot since the interactions between the participants reveal
some information that has to be considered when we carry out the privacy analysis.

3.2 The VPriv Scheme

In this section we introduce the VPriv scheme [BBP09], a protocol that offers a variety of
location-based vehicular services such as “pay-as-you-go” insurance, electronic toll collection,
etc. Its goal is to both protect the privacy of drivers whilst ensuring that they cannot cheat
service providers by, for instance, paying a lower price.

3.2.1 Description

The participants are a set of users with vehicles and a service provider. We assume that time
is split into periods. The following three phases detailed below are executed in order by each
vehicle during each period. At the start of a period, the vehicle generates fresh random tags
for the period and registers commitments to hashed versions of these with the service provider
(registration phase). Then, whenever the vehicle must emit a message containing an identifier
during the period it will choose a new tag from its set of fresh tags. The tags are emitted in clear
and the service provider records all tags v emitted by all vehicles together with the emission
location l and a timestamp t, building a database containing a mixture of tuples (v, t, l) (driving
phase). Finally, at the end of a period, each user initiates a protocol with the service provider
in order to compute and settle the payable debts (reconciliation phase).

In the following, [M]d denotes a commitment to message M that can only be revealed with
opening key d. Moreover, it is assumed to be a homomorphic commitment scheme, thus we
have that:

[M1]d1 · [M2]d2 = [M1 +M2]d1+d2 .

We further use fk(M) to denote a deterministic one-way function f that is parametrized by a
key k. Note that knowing fk(M) and k does not allow one to retrieve M but only to compute
a new hash matching fk(M).

Phase 1 - Registration. Each vehicle generates a set V of fresh tags v1, . . . , vn and a set of
fresh keys k1, . . . , ks for f . It furthermore generates opening keys dk1, . . . , dks and dv1

1 , . . . , dv
s
n.

It then forms s round packages

V → S : ri =
(
id, i, [ki]dki , [fki(v1)]dvi1 , . . . , [fki(vn)]dvin

)
consisting of the round number i ∈ [1; s], a commitment to the round key ki, and commitments
to encryptions of the vehicle’s tags under the round key. The vehicle sends the round packages
to the server together with a fixed identifier id for the user, such as the vehicle’s license plate.

Phase 2 - Driving. Each vehicle emits its tags v1, . . . , vn in random order along its route.
The server records these tags along with the location l where it was emitted and a timestamp t.

Phase 3 - Reconciliation. The server starts the reconciliation phase by sending the list W
of all m tags wj in its database together with their associated cost cj , i.e. W contains all tags
emitted by all vehicles during the period. Then the vehicle computes C as the sum of the costs
of its own tags contained in W and sends this back to the server

3.2. THE VPRIV SCHEME 43

S → V : W =
[
(w1, c1), . . . , (wm, cm)

]
V → S : id, C

The remaining part of the protocol consists of several rounds. For each round i, the vehicle
generates opening keys dci1, . . . , dc

i
m. Then, it processes all pairs in W by hashing the tag wj

under its round key ki and committing to the associated cost cj using opening key dcij . It

permutes the pairs using a random permutation σi and sends the resulting list U i to S together
with its identifier. Then, the server decides to either verify that U i is indeed the correct
processing of W under ki and dci1, . . . , dc

i
m or to verify that the user has correctly calculated

the cost C. In the former case it sends bi = 0 to the vehicle and in the later case bi = 1.

V → S : id, U i =
[(
fki(wσi(1)), [cσi(1)]dci1

)
, . . . ,

(
fki(wσi(m)), [cσi(m)]dcim

)]
S → V : bi

V → S :

{
id, dki, dci1, . . . , dc

i
m if bi = 0

id, dvi1, . . . , dv
i
n, D

i if bi = 1

If bi = 0 the server receives dki, dci1, . . . , dc
i
m from the vehicle. It can then obtain ki from ri

and verify that U i correctly follows from W . If bi = 1 the server receives dvi1, . . . , dv
i
n to open

the commitments in ri to obtain the hashed version of the vehicle’s tags fki(v1), . . . , fki(vn).
Knowing these it can pick out the pairs from U i belonging to the vehicle (by the deterministic
nature of fki). It multiplies the cost commitments from these together and verifies that they
indeed open to C under opening key Di that is provided by the vehicle.

If the above mentioned checks pass for every round then the server accepts, the client is
billed, and a new period begins. It can be argued that the probability of a cheating vehicle
convincing the server of a false cost is 2−s. This probability can hence be made arbitrary low
by choosing a large enough number of rounds.

Spot checks. Note that there is no mechanism in the protocol described above that prevents
vehicles from cheating by not emitting the tags they have committed to in order to reduce the
price they have to pay. To address this the protocol suggests random spot checks. A spot
check consists of an enforcement device that secretly collects identifying data about passing
vehicles at locations where they are supposed to emit tags, for instance by taking a photograph
of the license plate. This way it will obtain a database DB of tuples (id, v, l, t) each with an
identity id, a tag v, a location l, and a timestamp t. Before the reconciliation phase the server
will ask the vehicle about its identity id, challenge it with {(l, t) | (id, v, l, t) ∈ DB}, and e.g.
fine the user if it fails to provide matching tags or the provided tags are not in the server’s
database. Since the location of the spot checks are assumed to be unknown to the vehicles, it
can be argued that they do not know when they can safely avoid emitting a (valid) tag and
hence must always do so when they are supposed to. Note that some privacy is leaked due to
the spot checks; it is argued that this is at an acceptable level.

3.2.2 Privacy

The privacy definition for the VPriv scheme as stated in [BBP09] asks that the privacy guar-
antees from the system are the same as those of a system in which the server, instead of storing
tuples (v, t, l), stores only tag-free path points (t, l). In other words, from the server’s point
of view, the tags might just as well be uncorrelated and random. This definition accounts for
the fact that some privacy leaks are unavoidable and should not be blamed on the system. For
instance, if one somehow learns that only a single vehicle was on a certain road at a particular

44 CHAPTER 3. PRIVACY FOR ANONYMOUS LOCATION BASED SERVICES

time, then that vehicle’s tags can of course be linked to the tags emitted along the road at that
time.

3.3 Formal Model

The process calculus used as input to the ProVerif tool is a variant of the applied pi calcu-
lus [AF01], a process calculus for formally modelling concurrent systems and their interactions.
We here recall the basic ideas and concepts of this calculus that are needed for our analysis.

3.3.1 Messages

To describe messages, we start with a set of names used to identify communication channels
and other atomic data, a set of variables x, y, . . . and a signature Σ formed by a finite set of
function symbols f, g, . . . each with an associated arity. Function symbols are distinguished
into two categories: constructors and destructors. We use standard notation for function
application, i.e. f(M1, . . . ,Mn). Constructors are used for building messages. Destructors
represent primitives for taking messages apart and can visibly succeed or fail (while constructors
always succeed). Messages M,N, . . . are obtained by repeated application of constructors on
names and variables whereas a term evaluation D can also use destructors. The semantics of
a destructor g of arity n is given by a set of rewrite rules of the form g(M1, . . . ,Mn) → M0

where M0, . . . ,Mn are messages that only contains constructors and variables. Given a term
evaluation D, we write D ⇓ M when D can be reduced to M by applying some destructor
rules.

In the following, we consider constructors to model commitments and the one-way function
f . Since there is no destructor associated to f we have only one destructor whose semantics is
given by the following rule:

open(com(x, y), y) → x.

The applied pi calculus is quite general: it allows us, for instance, to model the homomor-
phism property of the commitment scheme by means of an equational theory containing, among
others, the equation

com(x1, y1)× com(x2, y2) = com(x1 + x2, y1 + y2).

However, since ProVerif will not be able to reason with this equation, we will remove the
homomorphic property in Section 3.5 and instead consider a simplified version of the protocol
with no costs.

3.3.2 Processes

Processes are built from the grammar described in Figure 3.1, where M is a message, D is a
term evaluation, n and c are names, x is a variable, and i is a positive integer.

The process “let M = D in P else Q” tries to evaluate D; if this succeeds and if the resulting
message matches the term M then the variables in M are bound and P is executed; if not then Q
is executed. As explained in [Bla04], the process phase i;P indicates the beginning of phase
i. Intuitively, the process first executes phase 0, that is, it executes all instructions not under
phase i ≥ 1. Then, when changing from phase i to phase i + 1, all processes that have not
reached a phase i′ ≥ i+ 1 instruction are discarded and the instructions under phase i+ 1 are
executed.

The rest of the syntax is quite standard. To ease the presentation we will use tuples of
messages, denoted by parentheses, while keeping the reduction rules for these tuples implicit.

3.3. FORMAL MODEL 45

P,Q,R ::= processes
0 null process
P | Q parallel composition
!P replication
new n;P name restriction
let M = D in P else Q term evaluation
in(c,M);P message input
out(c,M);P message output
phase i;P phase separation

Figure 3.1: Process grammar

Vehicle(id, l1, l2)
def
=

phase 1; (* registration phase *)
new v1; new v2;
new k; new dk; new dv1; new dv2;
out(c, (id, com(k, dk), com(f(v1, k), dv1), com(f(v2, k), dv2)));
phase 2; (* driving phase *)
out(c, (l1, v1)); out(c, (l2, v2, id));
phase 3; (* reconciliation phase *)
in(c, (x1, x2, x3));
out(c, (id, f(x2, k), f(x1, k), f(x3, k)));
in(c, y);
if y = false then out(c, (id, dk)) else out(c, (id, dv1, dv2))

Figure 3.2: Illustrative vehicle process

We will omit “else Q” when Q is 0. In the remainder of the chapter, we use the more intuitive
notation “if M = N then P else Q” instead of “let M = N in P else Q”.

An evaluation context C is a process with a hole, built from [], C | P , P | C and new n;C.
We obtain C[P] as the result of filling the hole in C with P . A process P is closed if all its
variables are bound through an input or a let construction.

The vehicle process. To illustrate the calculus used throughout this chapter, we give in
Figure 3.2 a partial description of the vehicle process. It follows the description given in the
previous section but is simplified in several aspects to keep this illustrative example as simple
as possible. A more accurate model is described in Section 3.5.

Here we consider the case where a vehicle only has two tags v1 and v2, and where the
reconciliation phase consists of only one round. We assume that during the driving phase
the vehicle will visit only two locations and that the vehicle is spot checked at the second
location. The vehicle receives a list of tags of size three (in reality, the length of the list is not
known a priori), and instead of applying a random permutation, we only encode one particular
permutation.

Semantics. The operational semantics of processes is essentially defined by two relations,
namely structural equivalence and reduction. Structural equivalence, denoted by ≡, is the
smallest equivalence relation on processes that is closed under application of evaluation contexts
and standard rules such as associativity and commutativity of the parallel operator. Moreover,

46 CHAPTER 3. PRIVACY FOR ANONYMOUS LOCATION BASED SERVICES

in order to deal with the phase construct, we also have structural rules for phases (see [BAF08]):

new n; phase i;P ≡ phase i; new n ;P
phase i; (P | Q) ≡ phase i;P | phase i;Q

phase i; phase i′;P ≡ phase i′;P if i < i′

Reduction at phase i, denoted by −→i, is the smallest relation closed under structural equivalence
and application of evaluation contexts such that:

RED I/O phase i; (out(c,M).Q | in(c,N).P) −→i phase i; (Q | Pσ)

RED FUN 1 phase i; let N = D in P else Q −→i phase i;Pσ if D ⇓M

RED FUN 2 phase i; let N = D in P else Q −→i phase i;Q
if there is no M such that D ⇓M

REPL phase i; !P −→i phase i; (P |!P)

where σ is the substitution defined on the variables that occur in N and such that M = Nσ.
In case such a substitution does not exist, the resulting process will be Q | in(c,N).P for the
RED I/O rule and Q for the RED FUN 1 rule. We denote −→=

⋃
i≥0 −→i and we write −→∗ for

the reflexive and transitive closure of reduction.

3.4 Privacy for Interactive Zero-Knowledge Protocols

We will define privacy using indistinguishability, which in turn will be formalized by a notion
of equivalence. Equivalences have already been used to model privacy properties in formal
analysis for e.g. vehicular mix-zones [DDS10] and electronic voting [KR05, DRS08]. The precise
notion used is often observational equivalence but as we will explain, it happens that this
notion is too strong to analyse interactive zero-knowledge protocols. So, we will rely on trace
equivalence to formalize our notion of privacy in Section 3.4.2. However, the only equivalence
relation supported by ProVerif is a stronger notion called diff-equivalence, and thus we explain
in Section 3.4.3 how to use this tool to analyse trace equivalence-based properties.

3.4.1 Equivalences

One equivalence notion for formalizing indistinguishability is observational equivalence intro-
duced in [Mil80, AF01]. Here we write P⇓c when P can send an observable message on the
channel c; that is, when P −→∗ C[phase i; out(c,M);Q] for some evaluation context C that does
not bind c, some message M , some process Q, and some integer i.

Definition 3.4.1 (Observational equivalence). Observational equivalence, denoted ∼o, is the
largest symmetric relation R on closed processes P and Q such that P R Q implies:

1. if P⇓c then Q⇓c;

2. if P → P ′ then there exists Q′ such that Q→∗ Q′ and P ′ R Q′;

3. C[P] R C[Q] for all evaluation contexts C.

Intuitively, a context may represent an attacker, and two processes are observationally
equivalent if they cannot be distinguished by any attacker at any step: every output step in an
execution of process P must have an indistinguishable equivalent output step in the execution
of process Q. If not then there exists a context that ‘breaks’ the equivalence.

In the case of privacy for the VPriv protocol, we will see that this notion is too strong (see
the discussion in Section 3.4.2). Instead, we will use the notion of trace equivalence (also called
testing equivalence in some other contexts [AG97]).

3.4. PRIVACY FOR INTERACTIVE ZERO-KNOWLEDGE PROTOCOLS 47

Definition 3.4.2 (Trace equivalence). Trace equivalence ∼t is the largest symmetric relation
on closed processes P and Q such that for all evaluation contexts C we have C[P]⇓c if and only
if C[Q]⇓c.

This is a strictly weaker notion than observational equivalence (see e.g. [CD09]) but intu-
itively it captures the equivalence upon which we can a priori hope to base our privacy property,
as we explain below.

3.4.2 Formal Definition of Privacy

In our formal privacy definition we will assume that we have at least two honest vehicles called A
and B. As we are interested in studying privacy guarantees for A, the process VA for this
vehicle will consist of all three phases of the protocol (registration, driving, and registration).
We assume that vehicle A has three tags, one of which is emitted at one of the two locations
route left and routeright , one which is ‘leaked’, i.e. given to the server along with the vehicle’s
identity to model the spot-check procedure, and one which is not emitted. On the other hand,
vehicle B is only needed to counterbalance the effect of the tag emitted by A at a route location.
Thus, we will consider a vehicle B that only executes its driving phase, denoted V dri

B in the
equivalence below, by emitting its tag at the route not visited by vehicle A.

We say that privacy holds if the following equivalence holds:

CT
[
VA(route left) | V dri

B (routeright)
]

∼t
CT
[
VA(routeright) | V dri

B (route left)
]

where CT is an evaluation context modelling additional assumptions that may have to be made
for the privacy property to hold (e.g. that the server is curious but otherwise assumed to
be honest and following the protocol, or the existing of a trusted third party helping vehicles
ensure that the list of tags received from the server contains tags from both vehicles). The
next section presents the analysis we have performed, including the definition of the vehicles
processes and the different contexts CT within which we have performed the analysis.

Note that observational equivalence would be too strong for this property to hold. This
is due to the interactive zero-knowledge subprotocol that occurs in the reconciliation phase.
Consider the two slightly different processes VA(route left) and VA(routeright) in our privacy
definition and assume that the two processes have reached the reconciliation phase. At this
point, the server will send a list of tags to vehicle A. Then one of the two processes, say the
former one, will commit to a permuted list. To mimic this step, the latter process has also to
commit to a permuted list. However, no matter what list it commits to, this list will not mimic
the former process’ list for either b = 0 or b = 1 because of the slight difference between them.
In other words, the choice of a list to mimic the former process depends on the challenge bit b
that has not yet been received from the server. Thus observational equivalence is impossible
to achieve. However, moving from observation equivalence to trace equivalence allows us to
choose the mimic trace only after the challenge bit has been learned. Intuitively, this captures
privacy: if an attacker observes a trace of registration, tag emission and reconciliation, and
then guesses that vehicle A took a particular route, then there is an equivalent trace where
vehicle A takes a different route. The fact that we cannot specify the equivalent trace until
we have seen the whole of the first trace does not seem to lead to any loss of privacy. In fact,
from the definition of zero-knowledge protocols in the computational model [Gol01, §4] we see
that the protocol is actually designed to support only trace equivalence and furthermore, that
soundness contradicts observational equivalence.

48 CHAPTER 3. PRIVACY FOR ANONYMOUS LOCATION BASED SERVICES

3.4.3 Checking Privacy with ProVerif

The basic idea behind equivalence checking in ProVerif is to overlap the two processes that are
supposedly equivalent, thereby forming a biprocess B. To achieve this, the syntax of ProVerif
contains a choice[M,M ′] operator which allows us to model a pair of processes that have
the same structure and differ only in the choice of terms. Given a biprocess B, the process
P = fst(B) is obtained by replacing all occurrences of choice[M,M ′] in B with M . Similarly,
Q = snd(B) is obtained by replacing choice[M,M ′] with M ′. When ProVerif is able to conclude
positively on B, this implies that P ∼o Q. However, ProVerif checks a stronger equivalence
than observational equivalence and hence it fails on some simple examples of processes that are
equivalent, but whose equivalence cannot be simulated by the moves of a single biprocess.

We will use two transformations in order to use ProVerif to check the trace equivalence
defining our privacy property. The first arises from recent work which shows how to use
ProVerif to prove observational equivalence for a wider class of processes [DRS08]. Additionally,
we also transform our biprocess B into another biprocess B′ that preserves the traces of each
underlying process, i.e. fst(B) and fst(B′) will produce the same traces, and likewise for snd(B)
and snd(B′). This ensures that our transformation preserves trace equivalence. In our case
study this transformation consists of guessing b in advance and deadlocking the process if it
later turns out that the guess was wrong.

3.5 Privacy Analysis

The purpose of our analysis is to investigate the privacy guarantees provided for an honest user
in the VPriv protocol. We do not attempt to analyse whether users can cheat the server nor
whether the server will accuse an honest user of cheating.

Section 3.5.1 contains a description of the simplifications we had to make in order to carry
through the analysis in ProVerif. In Section 3.5.2 we describe our formal model of the VPriv
protocol using the applied pi calculus from the previous section. We give the results of our
analysis in Section 3.5.3.

3.5.1 Simplifications

The following simplifications were necessary in order to carry through the analysis in ProVerif.

Removing costs. In the extreme case where a unique price is used for every tag, the system
cannot protect the privacy of users. It seems reasonable however, to assume that the information
leaked by costs will in practice not affect the privacy of users. Forcing a uniform cost for
every tag seems to be the only solution if we want to carry out our analysis with ProVerif.
Furthermore, while we could model the homomorphic commitment scheme and its arithmetic
properties by means of an equational theory, we know that ProVerif will not be able to deal
with it properly in that it will not terminate. Thus, we remove prices and costs and proceed
with a simplified version of the VPriv protocol. This change only affects the reconciliation
phase where the list W sent by the server is now simply

S → V : W =
[
w1, . . . , wm

]
and the round subprotocol as described in Figure 3.3.

Fixing the length of W . It turns out that privacy can be violated if the list of tags sent
by the server is blindly accepted by the vehicles without any scrutiny. Some sanity conditions
must be fulfilled in order to guarantee privacy. Furthermore, implementing these sanity checks

3.5. PRIVACY ANALYSIS 49

V → S : id, U i =
[
fki(wσi(1)), . . . , fki(wσi(m))

]
S → V : bi

V → S :

{
id, dki if bi = 0

id, dvi1, . . . , dv
i
n if bi = 1

Figure 3.3: Reconciliation round protocol without cost.

BS(idA, vA1 , v
A
2 , v

A
3 , v

B
1 , vl, vr)

def
=

new pc;
phase 2;Bdri

| phase 3;BBB

| ! new k, dk, dv1, dv2, dv3

(
phase 1;Vreg; phase 3;V b=0

rec

)
| ! new k, dk, dv1, dv2, dv3

(
phase 1;Vreg; phase 3;V b=1

rec

)
Figure 3.4: System Biprocess

together with the random permutation would lead us to consider a complex model that ProVerif
is not able to handle. So instead, we fix a priori the length of the list expected by the vehicle to a
size of three. This will allow us to easily encode the sanity checks and the random permutation,
and despite its simplicity, still allow us to discover a number of issues to which attention should
be paid when implementing the protocol. Note that with the sanity conditions discovered we
can argue that fixing the length to three does not weaken the attacker.

3.5.2 Analysis Model

The model is represented by the biprocess BS defined in Figure 3.4 and consisting of five parts:
Bdri, Vreg, V

b=0
rec , V b=1

rec , and BBB. The first four of these together make up the behaviour of
vehicle A and vehicle B. Using the choice operator the emitter biprocess Bdri outputs the tags
of both vehicles while Vreg and the two Vrec are responsible for performing registration and
reconciliation, respectively, for vehicle A. By splitting up vehicle A in this way we accurately
model an unbounded number of reconciliation rounds while only emitting its tags once. The
bulletin board BBB is responsible for performing sanity checks on W . It receives a list of tags
on a public channel and forwards the list to the Vrec biprocesses on the private channel pc an
unbounded number of times if the checks succeed. Note that to avoid trivial false attacks,
any checks against vA1 and vB1 must use the choice operator and hence the bulletin board is a
biprocess. Finally, we use ProVerif’s phases to orchestrate the processes so that they follow the
order dictated by the protocol.

As discussed in Section 3.4, in order to establish the equivalence between the two cases,
the selection of permutation for U i depends upon the bit bi that will be send by the server.
We have two separate reconciliation processes V b=0

rec and V b=1
rec to model this. They guess that

b = 0 and b = 1 will be sent, respectively, and permute accordingly. If the guess was correct
the process proceeds as dictated by the protocol, otherwise it comes to a deadlock. Formally,
let process Pxyz be defined by

Pxyz = in(s1, ·); out
(
c,
(
idA, f(wx, k), f(wy, k), f(wz, k)

))
; out(s2, ·); 0

which outputs the encrypted tags w1, w2 and w3 permuted according to xyz. The initial input
on s1 is used to insure that only a single permutation is selected and the final output on s2

to indicate that the output was completed. The · stands for any name never used after it is

50 CHAPTER 3. PRIVACY FOR ANONYMOUS LOCATION BASED SERVICES

V b=0
rec (idA, pc, k, dk)

def
=

new s1, s2;
in(pc, (w1, w2, w3));

out(s1, ·); 0
| P123 | P132 | P213 | P231 | P312 | P321

| in(s2, ·); in(c, b); if b = 0 then out(c, (idA, dk))

Figure 3.5: Reconciliation process for b = 0

V b=1
rec (idA, pc, k, dv1, dv2, dv3)

def
=

new s1, s2;
in(pc, (w1, w2, w3));

out(s1, ·); 0
| P123 | P132 | P213 | P231 | P312 | P321

| in(s2, ·); in(c, b); if b = 1 then out(c, (idA, dv1, dv2, dv3))

Figure 3.6: Reconciliation process for b = 1

bound. Using this process we then define V b=0
rec as shown in Figure 3.5 and V b=1

rec as shown in
Figure 3.6. We note that because of the diff-equivalence that ProVerif is actually checking (see
Section 3.4.3) it will only try to match the permutations at the same syntactical position. This
means that we have to specify to ProVerif how permutations should be matched. For V b=0

rec we
can choose the same permutation in the two cases and hence no further modelling is needed
and V b=0

rec is actually just a process. However, this is not true for V b=1
rec where we have to move

the processes Pxyz around depending on which case we are in. We do this using the choice
operator and hence V b=1

rec is a biprocess. Let vl be the tag emitted at route left and vr the tag
emitted at routeright . We have then chosen to arrange the permutations based on w1 = vl and
w3 = vr and hence need to enforce this in the bulletin board.

3.5.3 Analysis Results

Unsurprisingly, it turns out that we have no privacy if W only contains tags of a single vehicle.
It is necessary to ensure that the tags of both of the two honest vehicles are included in W ,
i.e. that W contains at least vA1 (the tag emitted by vehicle A at its route location), and vB1
(the tag emitted by the vehicle B at its route location). Actually, this is not sufficient since
the server can still break privacy by sending a list with duplicates. An attack using this trick
was reported by ProVerif.

With the above model BS we performed several analyses by varying the sanity checks
performed by the bulletin board. For the simplest case without any checks on W an attack is
reported where arbitrary values are sent for w1 = w2 and w3. This is a false attack caused by
the way we match permutations in V b=1

rec . We can investigate the need for checks by removing
all V b=1

rec . Then a real attack is reported: by sending arbitrary values for w1 and w2 and w3 = vl
the server can tell the cases apart when it sends b = 0.

In the case with W subject to inclusion checks only the attacker is allowed to choose w2

but must send w1 = vl (i.e. whichever tag was emitted in the left location) and w3 = vr
(whichever tag was emitted on the right). An attack is found when w2 = vl by a comparison
of the encrypted elements of U i.

Finally, for the case with W subject to inclusion checks and no duplicates ProVerif is unable
to conclude when no duplicates is interpreted as w2 6= vl ∧ w2 6= vr. However, if we interpret

3.6. CONCLUSION 51

this as w2 = vA2 ∨ w2 = vA3 , i.e. rather than using an arbitrary tag not equal to vl or vr, the
attacker must specifically use one of the unused registered tags, ProVerif is able to prove the
equivalence and thus the privacy property for our model.

3.5.4 Evaluation

We evaluate first the VPriv protocol, then our analysis. Results on the privacy-preserving
properties of the protocol are largely positive, at least in our abstract model. We discovered
only privacy breaches that are possible for an active attacker who can tamper with the list,
not for an ‘honest but curious’ attacker who merely inspects the protocol trace. We proposed
some checks that could be made on the list W to thwart even an active attacker. The check
for no duplicates is easy enough for a single vehicle to apply, but the check that the list really
contains the tags of other vehicles is less easy and may require a trusted third party.

Turning to our analysis, it should be clear that a reasonable amount of work was required to
develop an abstract model suitable for ProVerif whilst preserving the features of the protocol.
However, it was not our aim to formalise the protocol just to exemplify the use of ProVerif
but rather to push the boundaries of the tool in terms of protocol features. As such we have
succeeded in identifying several features that a future version of the tool might handle better,
namely lists, permutations, and homomorphic commitment schemes.

3.6 Conclusion

We have presented a privacy analysis of the VPriv scheme for anonymous location-based vehic-
ular services. We have shown how a notion of trace equivalence captures the privacy notion the
protocol is intended to provide, and have formally verified this property, albeit for an abstract
model of the protocol. During our analysis we uncovered a number of areas where special at-
tention needs to be paid when implementing such a protocol. We also introduced novel features
into formal privacy modelling such as random list permutations and reasoning about interactive
zero-knowledge protocols.

In future work we plan to investigate proofs of soundness for abstractions in the context of
privacy properties, and apply our method to other privacy-enhancing protocols. In particular, it
would be interesting to investigate a more general approach to reasoning about zero-knowledge
protocols using the ProVerif tool set.

3.7 Bibliography

[ACRR10] Myrto Arapinis, Tom Chothia, Eike Ritter, and Mark D. Ryan. Analysing unlink-
ability and anonymity using the applied pi calculus. In Proc. 23rd IEEE Computer
Security Foundations Symposium (CSF’10), pages 107–121. IEEE Computer Society
Press, 2010.

[AF01] Mart́ın Abadi and Cédric Fournet. Mobile values, new names, and secure commu-
nication. In Proc. 28th ACM Symposium on Principles of Programming Languages
(POPL’01), pages 104–115, New York, USA, 2001. ACM Press.

[AG97] Mart́ın Abadi and Andrew Gordon. A calculus for cryptographic protocols: The spi
calculus. In Proc. 4th ACM Conference on Computer and Communications Security,
pages 36–47, Zurich (Switzerland), 1997. ACM Press.

[BAF08] Bruno Blanchet, Mart́ın Abadi, and Cédric Fournet. Automated verification of
selected equivalences for security protocols. Journal of Logic and Algebraic Pro-
gramming, 75(1):3–51, 2008.

52 CHAPTER 3. PRIVACY FOR ANONYMOUS LOCATION BASED SERVICES

[BBP09] Andrew J. Blumberg, Hari Balakrishnan, and Raluca Popa. VPriv: Protecting pri-
vacy in location-based vehicular services. In Proc. 18th Usenix Security Symposium,
2009.

[BCdH10] Mayla Brusó, Konstantinos Chatzikokolakis, and Jerry den Hartog. Formal verifi-
cation of privacy for RFID systems. In Proc. 23rd IEEE Computer Security Foun-
dations Symposium (CSF’10). IEEE Computer Society Press, 2010.

[Bla04] Bruno Blanchet. Cryptographic Protocol Verifier User Manual, 2004. http://

prosecco.gforge.inria.fr/personal/bblanche/proverif/.

[BMU08] Michael Backes, Matteo Maffei, and Dominique Unruh. Zero-knowledge in the
applied pi-calculus and automated verification of the direct anonymous attestation
protocol. In Proc. Symposium on Security and Privacy (S&P’08), pages 202 –215.
IEEE Computer Society Press, 2008.

[CD09] Véronique Cortier and Stéphanie Delaune. A method for proving observational
equivalence. In Proc. 22nd IEEE Computer Security Foundations Symposium
(CSF’09), pages 266–276, Port Jefferson, NY, USA, 2009. IEEE Computer Soci-
ety Press.

[DDS10] Morten Dahl, Stéphanie Delaune, and Graham Steel. Formal analysis of privacy for
vehicular mix-zones. In Proc. 15th European Symposium on Research in Computer
Security (ESORICS’10), volume 6345 of LNCS, pages 55–70. Springer, 2010.

[DINI05] Marios D. Dikaiakos, Saif Iqbal, Tamer Nadeem, and Liviu Iftode. VITP: an in-
formation transfer protocol for vehicular computing. In Proc. 2nd International
Workshop on Vehicular Ad Hoc Networks (VANET’05), pages 30–39, 2005.

[DRS08] Stéphanie Delaune, Mark D. Ryan, and Ben Smyth. Automatic verification of
privacy properties in the applied pi-calculus. In Proc. 2nd Joint iTrust and PST
Conferences on Privacy, Trust Management and Security (IFIPTM’08), volume 263
of IFIP Conference Proceedings, pages 263–278. Springer, 2008.

[Gol01] Oded Goldreich. The Foundations of Cryptography, volume 1. Cambridge University
Press, 2001.

[KR05] Steve Kremer and Mark D. Ryan. Analysis of an electronic voting protocol in the
applied pi-calculus. In Proc. 14th European Symposium on Programming Languages
and Systems (ESOP’05), volume 3444 of LNCS, pages 186–200. Springer, 2005.

[Law08] Nate Lawson. Highway to hell: Hacking toll systems. Presentation at
Blackhat, 2008. Slides available from http://rdist.root.org/2008/08/07/

fastrak-talk-summary-and-slides/.

[Mil80] Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes
in Computer Science. Springer, 1980.

[Sta06] IEEE Standard. Trial-Use Standard for Wireless Access in Vehicular Environments
– Security Services for Applications and Management Messages, Approved 8 June
2006.

http://prosecco.gforge.inria.fr/personal/bblanche/proverif/
http://prosecco.gforge.inria.fr/personal/bblanche/proverif/
http://rdist.root.org/2008/08/07/fastrak-talk-summary-and-slides/
http://rdist.root.org/2008/08/07/fastrak-talk-summary-and-slides/

Chapter 4

Universally Composable Symbolic
Analysis

We consider a class of two-party function evaluation protocols in which the parties are allowed to
use ideal functionalities as well as a set of powerful primitives, namely commitments, homomor-
phic encryption, and certain zero-knowledge proofs. We illustrate that with these it is possible
to capture protocols for oblivious transfer, coin-flipping, and generation of multiplication-triple.

We show how any protocol in our class can be compiled to a symbolic representation ex-
pressed as a process in an abstract process calculus, and prove a general computational sound-
ness theorem implying that if the protocol realises a given ideal functionality in the symbolic
setting, then the original version also realises the ideal functionality in the standard computa-
tional UC setting. In other words, the theorem allows us to transfer a proof in the abstract
symbolic setting to a proof in the standard UC model.

Finally, we show that the symbolic interpretation is simple enough in a number of cases for
the symbolic proof to be partly automated using ProVerif.

4.1 Introduction

Giving security proof for cryptographic protocols is often a complicated and error-prone task.
There is a large body of research aimed at doing something about this problem using methods
from formal analysis [AR02, BPW03, CH06, CC08, CKW11]. This is interesting because the
approach could potentially lead to automated or at least computer-aided (formal) proofs of
security.

It is well known that the main difficulty with formal analysis is that it is only feasible when
enough details about the cryptographic primitives have been abstracted away, while on the
other hand this abstraction may make us “forget” about issues that make an attack possible.
One solution to this problem is to show once and for all that a given abstraction is computational
sound, which loosely speaking means that for any protocol, if we know there are no attacks on its
abstract symbolic version then this (and some appropriate complexity assumption) implies there
are no attacks on the original computational version. Or, in other words, that intuitively the
symbolic adversary is as powerful as the computational adversary in the sense that his ability to
distinguish in the real-world model is not greater than his ability to distinguish in the symbolic
model. Such soundness theorems are known in some cases (see related work), in particular for
primitives such as public-key encryption, symmetric encryption, digital signatures, and hash
functions.

Another issue with formal analysis is how security properties should be specified. Tradition-
ally this has been done either through trace properties or “strong secrecy” where two instances

53

54 CHAPTER 4. UNIVERSALLY COMPOSABLE SYMBOLIC ANALYSIS

of the protocol running on different values are compared to each other1. This approach has
carried on to work on computational soundness where results are known for security properties
such as authenticity and key secrecy. On the other hand, the cryptographic community has long
recognised the usefulness of the simulation-based approach, not least when analysing protocols
where the players take inputs from the environment.

Finally, making protocol (and in particular system) analysis feasible in general requires
some way of breaking the task into smaller components which may be analysed independently.
While also this has been standard in the cryptographic community for a while, in the form of
eg. the UC framework [Can01, Can05], it has not yet received much attention in the symbolic
community (but see [CH06] for an exception).

4.1.1 Our Results

In this chapter we make progress on expanding the class of protocols for which a formal analysis
can be used to show security in the computational setting. We are particularly interested in
two-party function evaluation protocols and the primitives used by many of these, namely
homomorphic public-key encryption, commitments, and certain zero-knowledge proofs. We
aim for proofs of UC security against an active adversary and where one of the parties may be
(statically) corrupted.

Protocol model. We make some assumptions on the form of protocols. Besides the above
primitives protocols are also allowed to use ideal functionalities and communicate over authen-
ticated channels. We put some restrictions on how the primitives may be used. First, whenever
a player sends a ciphertext it must be accompanied by a zero-knowledge proof that the sender
knows how the ciphertext was constructed: if the ciphertext was made from scratch then he
knows the plaintext and randomness used, and if he constructed it from other ciphertexts us-
ing the homomorphic property then he knows randomness that “explains” the ciphertext as
a function of that randomness and ciphertexts that were already known. We make a similar
assumption on commitments and allow also zero-knowledge proofs that committed values relate
to encrypted values in a given way. Second, we assume that honest players use the primitives
in a black-box fashion, ie. an honest player can run the protocol using a (private) “crypto
module” that holds all his keys and handles encryption, decryption, commitment etc. This
means that all actions taken by an honest player in the protocol may depend on plaintext sent
or received but not, for instance, on the binary representation of ciphertexts. We emphasise
that we make no such restriction on the adversary.

We believe that the assumptions we make are quite natural: it is well known that if a player
provides input to a protocol by committing to it or sending an encryption then we cannot
prove UC security of the protocol unless the player proves that he knows the input he provides.
Furthermore, active security usually requires that players communication over authenticated
channels and prove that the messages they send are well-formed. We stress, however, that our
assumptions do not imply that an adversary must be semi-honest; for instance, our model does
not make any assumptions on what type and relationship checks the protocol must perform,
nor on the randomness distributions used by a corrupted player.

Security properties. As in the simulation-based paradigm we use ideal functionalities and
simulators to specify and prove security properties. More concretely, we can express all three

1For strong secrecy one runs the same protocol on two fixed but different inputs (or with one instance patched
to give an independent output) and then ask if it is possible to tell the difference between the two executions.
This can for instance be used to argue that a key-exchange protocol is independent of the exchanged key given
only the transmitted messages.

4.1. INTRODUCTION 55

entities in our model and say that a protocol φ is secure (with respect to the ideal functionality
F) if no adversary can tell the difference between interacting with φ and interacting with F and
simulator Sim2, later written φ ∼ F � Sim for concrete notions of indistinguishability. When
this equivalence is satisfied we also say that the protocol (UC) realises (or implements) the
ideal functionality.

We require that ideal functionalities only operate on plain values and do not use cryp-
tography, and as with protocols we assume that simulators only use the primitives and their
trapdoors through a crypto-module.

Proof technique. Our main result is quite simple to state on a high level: given a protocol
φ, ideal functionality F , and simulator Sim, we show how these may be compiled to symbolic
versions such that if we are given a proof in the symbolic world that φ realises F then it
follows that φ realises F in the usual computational world as well (assuming the crypto-system,
commitment scheme, and zero-knowledge proofs used are secure). As usual for UC security, we
need to make a set-up assumption which in our case amounts to assuming a functionality that
initially produces reference strings for the zero-knowledge proofs and keys for the crypto-system.

We arrive at our result as follows: we first define a simple programming language for speci-
fying protocols on a rather high and abstract level. The class of protocols we consider is then
defined as whatever can be described in this language. More formally the language can talk
about a set of entities that interact and we use the name system as a generic term for such a
set of entities. In particular, we can talk about a system triple

(
SysHreal

)
H for H ∈ {AB ,A,B}

modelling the behaviour and components of a protocol φ, but also a triple
(
SysHideal

)
H that

models F running together with a simulator. We denote the former a real protocol and the
latter an ideal protocol.

We then define three different ways of interpreting such systems:

• Real-world interpretation RW(Sys): Assuming concrete instantiations of the cryptographic
primitives this interpretation produces from system Sys a set of interactive Turing machines
that fits in the usual UC model. For instance, RW(SysAB

real) contains two ITMs MA,MB

executing the player programmes of φ, whileRW(SysAB
ideal) contains MF ,MSim respectively

executing the ideal functionality and the simulator.

• Intermediate interpretation I(Sys): This interpretation also produces a set of ITMs fit-
ting into the UC model, but does not use concrete cryptographic primitives. Instead we
postulate an ideal functionality that receives all calls to cryptographic functions and re-
turns handles to objects such as encrypted plaintexts while storing these plaintexts in a
restricted global memory. Players then send such handles instead of actual ciphertexts and
commitments. A new component of this interpretation is that the adversary is now also
given an operation module through which he is forced to launch his attack.

• Symbolic interpretation S(Sys): This interpretation closely mirrors the intermediate in-
terpretation but instead produces a set of processes described in a well-known process
calculus. This forms our symbolic model.

Having defined these interpretations we define notions of equivalence of systems in each
representation: RW(Sys1)

c∼ RW(Sys2) means that no polynomial time environment can
distinguish the two cases given only the public and corrupted keys, and may for instance be used
to capture that a protocol UC-securely realises F in the standard sense; for the intermediate
world I(Sys1)

c∼ I(Sys2) means the same but now in the global memory hybrid model; finally,

2Intuitively, the simulator is used to capture the “unimportant” differences between the two settings (e.g.
that cryptography is used in the former but not the latter) and to interpret the actions of the adversary relative
to the ideal functionality.

56 CHAPTER 4. UNIVERSALLY COMPOSABLE SYMBOLIC ANALYSIS

S(Sys1)
s∼ S(Sys2) means the two processes are observationally equivalent in the standard

symbolic sense.
We prove two soundness theorems stating first, that I(Sys1)

c∼ I(Sys2) impliesRW(Sys1)
c∼

RW(Sys2) and second, that S(Sys1)
s∼ S(Sys2) implies I(Sys1)

c∼ I(Sys2), so that in order
to prove UC security of a protocol3 in our class it is now sufficient to show equivalence in the
symbolic model and this is the part we can partly automate4 using the ProVerif tool [BAF05].

Finally, we note that in some cases (in particular when both players are honest) it is possible
to use a standard simulator construction and instead check a different symbolic criteria along
the lines of previous work [CH06]. This removes the manual effort required in constructing
simulators.

Analysis approach. Given the above, a protocol φ in our class may hence be analysed in
our framework as follows:

1. formulate φ and its ideal functionalities F1, . . . ,Fn in our model and language

2. likewise formulate the target ideal functionality G and simulator Sim

3. let
(
SysAB

real ,SysAreal ,SysBreal
)

and
(
SysAB

ideal ,SysAideal ,SysBideal
)

be respectively the real pro-
tocol composed of φ and F1, . . . ,Fn and the ideal protocol composed of G and Sim; then
show in the symbolic model, eg. using ProVerif, that S(SysHreal)

s∼ S(SysHideal) holds in all
three cases

4. use the soundness theorem to conclude that RW(SysHreal)
c∼ RW(SysHideal), and in turn

that φ realise G using simulator Sim

Note that as usually in the UC framework we only need to consider one session of the protocol
since the compositional theorem guarantees that it remains secure even when composed with
itself a polynomial number of times. Note also that we may apply our result to a broader
class of protocols through a hybrid-symbolic approach where the protocol in question is broken
down into several sub-protocols and ideal functionalities analysed independently either within
our framework or outside in an ad-hoc setting (possibly using other primitives) as outlined in
Section 4.8.1.

We have tried to make the models suitable for automated analysis using current tools such
as ProVerif, and although our approach requires manual construction of a simulator for the
symbolic version of the protocol, this is usually a very simple task. As a case study we in
Section 4.7 carry out an analysis of the oblivious transfer protocol from [DNO08].

4.1.2 Related Work

The main area of related work is computational soundness which we go into detail with below,
focusing in particular on three lines of closely related work. We refer to [CKW11] for an in-depth
survey of this area.

We also mention the area of symbolic modelling of security properties using the simulation-
based paradigm. To the best of our knowledge this paradigm has only received little attention in

3Note that we actually prove a slightly stronger result than what is needed to show UC security: it would
have been enough to show that if a real protocol realises an ideal functionality in the intermediate model then
it also does so in the real-world model. Concretely, we could have avoided defining a real-world interpretation
of an ideal protocol. As an added bonus, this slightly stronger result means that the soundness theorem could
also be used to give computational assurance to analyses where two instances of the real protocol (eg. running
on different fixed inputs) are compared.

4Obviously, the symbolic equivalence could also be proved by hand or using some other tool. We have chosen
ProVerif here for its resolving power and wide-spread acceptance in the symbolic community. Furthermore, if
better tool support arises for a different symbolic model then the first part of our soundness result could of
course be re-used.

4.1. INTRODUCTION 57

the symbolic community, yet seems natural when analysing function evaluation protocols such
as oblivious transfer. In particular, most symbolic models do either not follow this paradigm
or do not give the simulator special powers (such as trapdoors).

Finally, there is also a large body of work on the direct approach where the symbolic model
is altogether avoided but instead used as inspiration for creating a computational model easier
to analyse. This line of work includes [Bla08, MRST06, DDMR07] and while it is more expres-
sive than the symbolic approach we have taken here, our focus has been on abstracting and
automating as much as possible.

Computational soundness. The line of work started by Backes et al. [BPW03] and known
as “the BPW approach” gives an ideal cryptographic library based on the ideas behind abstract
Dolev-Yao models. The library is responsible for all operations that players and the adversary
want to perform (such as encryption, decryption, and message sending) with every message
being kept in a database by the library and accessed only through handles. Using the framework
for reactive simulatability [PW01] (similar to the UC framework) the ideal library is realised
using cryptographic primitives. This means that a protocol may be analysed relative to the
ideal library yet exhibit the same properties when using the realisation instead. The original
model supporting nested nonce generation, public-key encryption, and MACs was later been
extended to support symmetric encryption [BP04] and a simple form of homomorphic threshold-
encryption [LN08] allowing a single homomorphic evaluation. The approach has also been
used to analyse protocols for trace-based security properties such as authentication and key
secrecy [BP03, BP06].

Comparing our work to the BPW approach we see that the operation modules and global
memory functionality of our intermediate model correspond to the ideal cryptographic library,
and the real-world operation modules to the realisation. In this light Lemma 4.5.4 and 4.5.5
form our realisation result5. The difference lies in the supported operations: namely our more
powerful homomorphic encryption and simulation operations – the former allows us to imple-
ment several two-party functionalities while the latter allows us to express simulators for ideal
functionalities within the model. This not only allows us to capture a different class of security
properties6 (such as the standard assumptions on oblivious transfer with static corruption) but
also to do modular and hybrid-symbolic analysis. The importance of this was elaborated on
in [Can08].

The next line of work closely related is that started by Canetti et al. in [CH06] and
building on [MW04, BPW03] but adding support for modular analysis. They first formulate a
programming language for protocols using public-key encryption and give both a computational
and symbolic interpretation. They then give a mapping lemma showing that the traces of the
two interpretation coincide, ie. the computational adversary can do nothing that the symbolic
adversary cannot also do (except with negligible probability). While this only shows soundness
of trace properties they are then able to lift this to indistinguishability properties for two special
cases and give symbolic criteria for realising authentication and key-exchange functionalities.
Moreover, they use ProVerif to automate the analysis of the original Needham-Schroeder-Lowe
protocol (relative to authenticity) and two of its variants (relative to key-exchange). Later
work [CG10] again targets key-exchange protocols but adds support for digital signatures,
Diffie-Hellman key-exchanges, and forward security under adaptive corruption.

5Note that we put some requirements on the use of our “library” by demanding that protocols are well-
formed; the BPW library works for an environment by instead putting these requirements in the code of the
library.

6In principle the BPW model could be used as a stepping-stone to analyse cases where the simulator may
simply run the protocol on constants. However, the simulator is sometimes required to use trapdoors in order
to extract information needed to simulate an ideal functionality in the simulation-based paradigm. These cases
cannot be analysed with the operations of the BPW model.

58 CHAPTER 4. UNIVERSALLY COMPOSABLE SYMBOLIC ANALYSIS

Most important, our approach has been that of not fixing the target ideal functionalities but
instead letting it be expressible in the model (along with the realising protocol and simulator).
Hence it is relatively straight-forward to analyse protocols realising other functionalities than
what we have done here, whereas adapting [CH06] to other classes of protocols requires man-
ually finding and showing soundness of a symbolic criteria. It is furthermore not clear which
functionalities may be captured by symbolic criteria expressed as trace properties and strong
secrecy. In particular, the target functionalities of [CH06] and [CG10] do not take any input
from the players nor provide any security guarantees when a player is corrupt, and hence the
criteria do not need to account for these case. Again we also show soundness for a different set
of primitives.

The final line of related work is showing soundness of indistinguishability-based (instead of
trace-based properties). This was started by Comon-Lundh et al. in [CC08] and, unlike the two
lines of work mention above, aims at showing that if the symbolic adversary cannot distinguish
between two systems in the symbolic interpretation then the computational adversary cannot
do so either for the computational interpretation. [CC08] showed this for symmetric encryption
and was continued in [CHKS12] for public-key encryption and hash functions.

Our work obviously relates in that we are also concerned about soundness of indistinguisha-
bility. Again the biggest difference is the choice of primitives, but also that our framework
seems more suitable for expressing ideal functionalities and simulators: although mentioned
as an application, their model do not appear to be easily adapted to capturing the typical
structure of a composable analysis framework such as the UC framework (private channels are
not allowed for instance, see also [Unr11]). And while their result may be used as a stepping
stone they do not provide the essential simulator operations. To this end the result is closer to
what might be achieved through the BPW approach. Note that the work in [CHKS12] does not
require computable parsing (as we do through the NIZK proofs). However, for secure function
evaluation in the simulation-based paradigm some form of computational extraction is typically
required in general.

The work in [BMM10] is also somewhat related in that they also aim at analysing secure
function evaluation, namely secure multi-party computations (MPC). However, they instead
analyse protocols using MPC as a primitive whereas we are interested in analysing the (lower-
level) protocols realising MPC. Moreover, they are again limited to trace properties.

Symbolic modelling of security properties. Most related work in the huge area of sym-
bolic modelling of security properties (without computational soundness) is mainly focused on
either trace-based properties or notions related to strong secrecy ; so far the simulated-based
paradigm has not gained much popularity. Delaune et al. [DKP09] show that the paradigm
may be expressed in the applied-pi calculus and compare different instantiations including the
UC framework7. From this perspective our model of the UC framework is simple and does not
aim to capture as many aspects. On the other hand we give a computational interpretation
and soundness result. More generally, to the best of our knowledge this is also the first work
capturing secure functionalities such as oblivious transfer under corruption in a symbolic set-
ting; expressing the security requirements for this is natural in the simulation-based paradigm
but it is much less clear how this can be captured using trace-based properties or even strong
secrecy8.

7The computationally equivalent comparison was done in [DKMR05] from which we also took some inspi-
ration when formulating our model.

8For oblivious transfer protocols we typically require two properties regarding the secrecy of the involved
inputs: (i) even a corrupt sender does not learn the receiver’s choice bit b; and (ii) even a corrupt receiver only
learns the message xb that he is asking for and nothing about x1−b. While it might be possible to capture these
using strong secrecy for the cases where both players or only the receiver is honest, it is less clear how to do
this when only the sender is honest; we cannot for instance use S(x0, x1) ∼ S(0, x1) to capture that x0 should

4.1. INTRODUCTION 59

Note that (randomised) oblivious transfer was expressed and analysed symbolically in the
probabilistic applied-pi calculus in [GPT07] but not using the simulated-based paradigm and
hence only for the case where both players are honest.

4.1.3 Organisation

The rest of the chapter is organised as shown next. As a reading hint, Section 4.2 should
be read before later sections. Readers coming from the cryptographic community may then
continue to read the chapter in the given order, following a “top-down” approach of progressively
removing cryptography and bitstrings, and ending up with an highly idealised model. On the
other hand, readers coming from the symbolic community may instead choose a “bottom-up”
approach starting with the symbolic or intermediate interpretation and then replace the ideal
cryptography with concrete schemes afterwards.

Section 4.2 specifies our protocol class including the interface of the crypto black-boxes,
dubbed operation modules. It then introduces a simple programming language and illustrates
how an oblivious transfer, a commitment, a coin-flipping, and a triple-generation protocol may
be expressed, as well as their ideal functionalities and suitable simulators.

Section 4.3 gives the preliminaries for the real-world interpretation, ie. it introduces our
computational setting in the form of the UC framework, and defines the assumptions we make
on the cryptographic primitives.

Section 4.4 gives the real-world interpretation of a system in terms of the UC framework
and the primitives. This amounts to specifying how protocols are executed and implementing
the operation modules.

Section 4.5 gives the intermediate interpretation of a system still in terms of the UC frame-
work but this time using an ideal global memory instead of the primitives. The soundness
theorem is then shown by introducing the concept of a translator that maps messages between
the two interpretations; the translator is in fact just a standard UC simulator but we want to
avoid overloading this name.

Section 4.6 gives the symbolic interpretation as an abstraction of the intermediate model
using a dialect of the applied-pi calculus. Soundness of symbolic indistinguishability is a simple
result given the abstract nature of the intermediate model.

Section 4.7 shows how the oblivious transfer protocol we use as a running example may be
analysed using ProVerif. Although this is not fully automated due to the nature of the tool, we
instead give a systematic approach for massaging the processes of the symbolic interpretation
to fit the tool.

Finally, in Section 4.8 we give a few remarks on possible extensions and future work.

be kept secret because this puts an assumption on the behaviour or the corrupted player (that he will ask for
x1) and would not hold in the valid case where he asks for x0. From the simulation-based point of view, what
is missing is a simulator and ideal functionality that during the protocol execution can decide which xb he is
asking for and then release no other information.

60 CHAPTER 4. UNIVERSALLY COMPOSABLE SYMBOLIC ANALYSIS

4.2 Protocol Model

This section introduces the class of protocols in consideration and for which the soundness result
holds. We use the oblivious transfer (OT) protocol from [DNO08] as a motivating example of the
general structure and the available primitives, and define two kinds of systems of programmes,
namely real protocols and ideal protocols, respectively describing the actual protocol and its
abstract behaviour.

Ending the section we give several examples of what is captured by our protocol class:
besides the OT protocol, we also give a coin-flip (CF) protocol with a commitment sub-protocol,
and a multiplication triple generation protocol used in secure multi-party computation. We give
the corresponding ideal functionalities for all four protocols as well as suitable simulators.

4.2.1 Motivating Example

We introduce our protocol class by way of an running example. Consider the OT protocol
from [DNO08] shown in Figure 4.1 with the sender programme on the left and the receiver
programme on the right. Note that both agents know encryption key ekR, the receiver knows
the corresponding decryption key dkR, and both agents know commitment key ckS . Also, the
sender expects values x0, x1 and the receiver bit b from the environment. Only the receiver
sends back an output to the environment, namely xb.

Sender: x0, x1 Receiver: b
ckS , crsS , ekR, crsR ckS , crsS , ekR, crsR, dkR

rb ∈R {0, 1}κ
Cb ← EncekR(b, rb)
πb ← Provebit,crsR(Cb, ekR, b, rb)

Cb, πb←−−−−−−−−−−−−−−
assert Verbit,crsR(Cb, ekR, πb)
rx, r0, r1 ∈R {0, 1}κ
Cx ← Evalsel,ekR(Cb, x0, x1, rx)
D0 ← ComckS (x0, r0)
D1 ← ComckS (x1, r1)
πx ← Provesel,crsS (Cx, . . .)

Cx, D0, D1, πx−−−−−−−−−−−−−−→
Versel,crsS (Cx, ekR, ckS , πx, . . .)
xb ← DecdkR(Cx)

Figure 4.1: The OT protocol of [DNO08] in the original notation

In the first step of the protocol the receiver encrypts his bit b under his encryption key.
When the sender next uses Cb to form an encyption Cx of either x0 or x1 it is critical for the
security of the protocol that she ensures that the plaintext of Cb is really a bit: if the receiver
sends an encryption of e.g. 2 then he would learn both x0 and x1 in the case where these are
bits. The proof πb ensures that Cb is really an encryption of a bit.

In the second step the sender uses the homomorphic properties of the encryption scheme to
form Cx from Cb, x0, and x1. The expression she is evaluating is

sel(α;β0, β1)
.
= α · β0 + α · β1

4.2. PROTOCOL MODEL 61

where α
.
= 1 − α denotes negation if α is a bit9. On the receiver side a proof is needed to

ensure correctness of the protocol in the sense that the sender combined the ciphertexts as she
was supposed to. As pointed out in [DNO08] it is also needed to obtain composable security
guarantees. Hence, the sender also commits to inputs x0 and x1 and forms a proof πx that Cx
was obtained by expression sel using Cb and the values in D0 and D1 as inputs.

Finally, in step three the receiver verifies the proof and decrypts Cx to obtain xb; this is
given as the output of the protocol to the environment.

The above OT protocol serves as a motivator for our choice of protocol class. The sup-
ported cryptography is commitments and homomorphic encryption with a fixed set of keys,
and all common reference strings, public encryption keys, and commitment keys are honestly
generated and known to everyone. We furthermore assume that commitments and encryptions
are annotated with the public components needed to check their associated proofs, in partic-
ular the encryption and commitment keys10. In summary, we assume that commitments and
encryptions always are of the following “package” forms:

commitment package: [comPack : D, ck, πU , crs]

encryption package: [encPack : C, ek, πT , crs]

evaluation package: [evalPack : C,C1, C2, ek,D1, D2, ck, πe, crs]

and otherwise treated as garbage, resulting in abortion. We shall through out the chapter use
D to range over commitment packages and C to range over both encryption and evaluation
packages. This leads to a protocol class parameterised by a finite domain of values, two finite
sets of types {Ti}i, {Uj}j , and two finite sets of arithmetical expressions {ek}k ⊆ {f`}`. Here,
as in the rest of the chapter we shall often assume that the expressions are over four variables
(mathcing the values in C1, C2, D1, and D2 in the evaluation package above) to simplify the
presentation.

To fit into our protocol class and analysis framework we hence need to formulate the example
OT protocol as shown in Figure 4.2 using operations encrypt, verEncPack etc. introduced below.
The supported types are T = bit and U = dom, where bit = {0, 1} and dom is some plaintext
space. The supported expression is e = f = sel as defined above. We see that the biggest
change is the use of packages instead of simple commitment, encryptions, and NIZK proofs.
Note that the two commitments are now implicitly created through the evale instruction; we
also allow the explicit creation of type annotated commitments but did not need this here.

A given protocol is analysed relative to a specification in the form of an ideal functionality.
Since we concentrate on two-party protocols against active adversary with static corruption
capabilities we basically have (up to) three scenarios to consider: when both player A and
player B are honest, when only player A is honest, and when only player B is honest. For each
of these scenarios we may ask if the adversary is able to tell if it is interacting with the honest
players or with the ideal functionality combined with a simulator. For instance, to analyse
the OT protocol with players S and R we ask if the adversary can tell the difference between
interacting with S and R, or with the ideal functionality FOT that is simply given the inputs
(x0, x1 and b) and returns the correct output (x0 if b = 0 and x1 otherwise) to the receiver.

9Note that sel may be written as β0 + α · (−1) · β0 + α · β1 and requiring only a somewhat-homomorphic
encryption scheme.

10These annotations are without loss of generality but means that we can talk about well-formed messages
independent of the protocol.

62 CHAPTER 4. UNIVERSALLY COMPOSABLE SYMBOLIC ANALYSIS

Sender: x0, x1 Receiver: b
ckS , crsS , ekR, crsR ckS , crsS , ekR, crsR, dkR

Cb ← encryptbit,ekR,crsR(b, r)

Cb = [encPack : Cb, ekR, πbit , crsR]
←−−−−−−−−−−−−−−

verEncPackbit,ekR,crsR(Cb)
Cx ← evalsel,...(Cb, x0, r0, x1, r1)

Cx = [evalPack : Cx, Cb, ekR, D0, D1, ckS , πx, crsS]
−−−−−−−−−−−−−−→

verEvalPacksel,ekR,ckS ,crsS (Cx, Cb)
xb ← decryptdkR(Cx)

Figure 4.2: The OT protocol of [DNO08] in our annotated notation

4.2.2 Systems

We use system as a generics term for grouping a set of programmes P1, . . . , Pn intended to be
executed concurrently. We shall use � as in

Sys
.
= P1 � · · · � Pn

to denote the composition of such programmes into a system Sys connected through a set of
directional plain and crypto ports. We shall also use � to combine systems.

We put a few requirements on a system for it to be well-formed. Firstly, we require that
every port is used as an input port by at most one programme, and likewise as an output
port by at most one programme (by a later restriction no programme can use a port both
for input and output). Ports not used in both directions are dubbed open and accessible to
the environment. Secondly, in our systems at most two programmes are labelled as being
cryptographic, intuitively the programme representing player A and B (or their simulators).

4.2.3 Programmes

A programme P is structured as a constant number of input-process-output cycles and is spec-
ified over a fixed set of value symbols V, a fixed set of constant symbols C, a set of randomness
symbols RP , a set of variables XP , a set of allowed operations OP to be specified below, and
a set of input and output ports respectively PinP and PoutP . Every processing of an input is
done by a combination of operations from OP , through references that are substituted into the
variables11.

To describe programmes we may introduce a simple programming language. Consider for
instance the OT sender and receiver from above; in our simple language they may be expressed
as in Figure 4.3 with the sender on the left and the receiver on the right. We see that the receiver
first listens on port inR

OT . When an input arrives on this port it names it b, checks that it is

11We shall not dwell too much over the difference between variables and references here but return to it
briefly when giving the computational semantics later. Note however, that the use of references allows us to
give a precise specification of the operations a programme may perform, which is central to the later soundness
results.

4.2. PROTOCOL MODEL 63

P S
OT

.
= input∅[receiveRS : cb];

if verEncPackbit,R,R(cb) then

output[outSOT : getInput];

input∅[in
S
OT : x01];

if isPair(x01) then

let x0 ← first(x01);

let x1 ← second(x01);

if isValue(x0) then

if isValue(x1) then

let cx ← evalsel,R,S,S(cx, x0, r0, x1, r1);

output[sendSR : cx];

stop

PR
OT

.
= input∅[in

R
OT : b];

if inTypebit(b) then

let cb ← encryptbit,R,R(b, r);

output[sendRS : cb];

input∅[receiveSR : cx];

if verEvalPacksel,R,S,S(cx, cb) then

let xb ← decryptR(cx);

output[outROT : xb];

stop

Figure 4.3: Player programme PS
OT for sender (left) and PR

OT for receiver (right)

a bit using inTypebit(b)
12, encrypts it using encryptbit,R,R(b, r)13, and sends the encryption on

port sendSR; it then starts to listen on port receiveSR. Figure 4.4 shows the flow of the entire
protocol.

Note that the sender programme PS
OT is expressed in what may be considered an atypical

manner where it first receives an encryption cb from the receiver and then asks the environment
for its input by sending a getInput constant on the open port outSOT to the environment. Upon
receiving its input x01 it only then replies with cx to the receiver. Expressing the sender this
way the system is “non-losing” despite using only “simple” programmes as discussed next; if
desired the sender may easily be patched to fit with the more typical notation.

Another thing to note about the language is that the input command inputP [p : x] is
specified with a set of ports P. The informal semantics is that the programme is also listening
on all ports in this set; however, an input on these will result in the programme aborting. The
motivation for having these is that the soundness result in Section 4.6.5 requires that systems
are non-losing, in the sense that whenever a programme sends a message on a closed port
p the receiving programme must also be listening on p. This property is easily satisfied by
having every programme listen to all of its input ports at every programme point. However,
doing this may also complicate analysing the protocol unnecessarily, especially when it comes
to automating this task. By having the set P we allow some flexibility in finding a description
suitable for automated analysis (the example in Section 4.2.8 illustrates this practice). When
every input command in a programme P is specified with P = ∅ we say that P is simple. Finally,
each input command also performs an implicit verification of packages as detailed later; this
ensures for instance that a player will only accept packages that were properly created by the
other player.

We shall consider four kinds of programmes: channel, plain, player, and simulator. The
difference between them lies in which kinds of ports they may have and what operations they
may use. Figure 4.5 lists all the operations we consider and the following subsections show
how these operations are distributed in the systems under consideration. Note here that the
available operations implicit limit how they may use the cryptographic material offered to them.
Note also that the evale method (unlike commitU and encryptT) does not take a randomness

12We shall in general omit the “else” part of if-then-else statements if this is just abortion.
13Throughout we write operations in this shortened notation, ie. encryptbit,R,R instead of encryptbit,ekR,crsR .

64 CHAPTER 4. UNIVERSALLY COMPOSABLE SYMBOLIC ANALYSIS

AuthRS

PR
OTPS

OT

AuthSR

1 : b

1 : cb

1 : cb2 : deliver

2 : cb

2 : getInput

3 : x01

3 : cx
3 : cx 4 : deliver

4 : cx

4 : xb

Figure 4.4: Linkes and message flow in the real OT protocol when both players are honest

symbol r as input; we will later come back to this artefact originating from wanting a symbolic
model that is easier to analysis with available tools.

The soundness result holds for a larger class of programmes than what can be captured
by the simple programming language so to include these we formally define programmes by
finite height execution trees. As an example, the OT receiver from above may for instance be
expressed as in Figure 4.6.

The nodes Σ are the programme points while the edges specify the actions available at each
programme point. These actions come in two flavours, namely input-output edges

Σ
input [pin: xin] ◦ check ψ ◦ compute σ ◦ output [pout: xout]−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Σ′

and input-only edges

Σ
input [pin: xin] ◦ check ψ ◦ compute σ−−−−−−−−−−−−−−−−−−−−−−−−→ Σ′

where pin, pout are ports, xin, xout are variables, ψ is a predicate formula over the available
testing operations, and σ = {µ1

x1
, . . . , µn

xn
} is a set of operations µi to be executed along with

the variables xi into which the reference to the result is to be stored.
Informally, the execution of an input-output edge happens when there is an accepting input

xin on port pin satisfying ψ (whether or not the input is accepting is detailed later). Then the
commands in σ are executed as described below and the object pointed to by xout is sent on
port pout. Executing an input-only edge is the same except no output is sent. We let Σ be a
set containing the references available (defined) at the programme point and constants used to
flag specific states.

For a well-formed programme we require: (i) that it is deterministic, ie. for any node all the
ψi on outgoing edges are mutually exclusive per input port yet also together form a tautology;
(ii) that it never rebinds a variable; (iii) that it never sends messages directly to itself14, ie.
PinP ∩PoutP = ∅; (iv) that it never uses a randomness symbol in connection with more than either
a commitment or an encryption, ie. that the mapping υP from its randomness symbols RP to
value and kind, υP : RP → V × {enc, com}, is a function; and finally, (v) that it only creates
each commitment and encryption package once (it may send it several times), ie. it only invokes
commitU,ck,crs, simcommitU,ck,crs, encryptT,ek,crs, or simencryptT,ek,crs once per (v, r) pair.

14This is because of our encoding in the symbolic model where programmes will not be able to perform a
handshake with themself.

4.2. PROTOCOL MODEL 65

isValue(x)→ b indicates whether x points to a value

eqValue(v, w)→ b indicates whether v and w point to equal values

inTypeU (v)→ b indicates whether v points to a value in type U

inTypeT (v)→ b indicates whether v points to a value in type T

pevalf (v1, v2, w1, w2)→ v evaluates expression e on the values pointed to

isPair(x)→ b indicates whether x points to a pair

pair(x, y)→ z creates a pairing of x and y

first(z)→ x gives a pointer to the first projection of pairing z

second(z)→ y gives a pointer to the second projection of pairing z

isConst(x)→ b indicates whether x points to a constant

eqConstc(v)→ b indicates whether v points to constant c

isComPack(x)→ b indicates whether x points to a commitment package

commitU,ck,crs(v, r)→ d new commitment package for value pointed to by v

verComPackU,ck,crs(d)→ b indicates whether d is a correct commitment package

isEncPack(x)→ b indicates whether x points to an encryption package

encryptT,ek,crs(v, r)→ c new encryption package for value pointed to by c

verEncPackT,ek,crs(c)→ b indicates whether c is a correct encryption package

isEvalPack(x)→ b indicates whether x points to an evaluation package

evale,ek,ck,crs(c1, c2, v1, r1, v2, r2)→ c creates evaluation package

verEvalPacke,ek,ck,crs(c, c1, c2)→ b indicates whether x is a correct evaluation package

verEvalPacke,ek,ck,crs(c, c1, c2, d1, d2)→ b indicates whether x is a correct evaluation package

decryptdk(c)→ v decrypts encryption pointed to by c

simcommitU,ck,simtd(v, r)→ d as commitU,ck,crs(v, r) but ignoring type check

simencryptT,ek,simtd(v, r)→ c as encryptT,ek,crs(v, r) but ignoring type check

simevale,ek,ck,simtd(c1, c2, v1, r1, v2, r2)→ c as evale,ek,ck,crs(c1, c2, v1, r1, v2, r2) but simulated proof

simevale,ek,ck,simtd(v, c1, c2, d1, d2)→ c creates fake evaluation package with encryption of v

extractComextd(d)→ v extracts value from commitment in com. package

extractEncextd(c)→ v extracts value from encryption in encryption package

extractEval1,extd(c)→ v extracts value from first commitment in eval. package

extractEval2,extd(c)→ v extracts value from second commitment in eval. package

Figure 4.5: Union of all operations available to the programmes in our protocol class

66 CHAPTER 4. UNIVERSALLY COMPOSABLE SYMBOLIC ANALYSIS

∅
input [inR

OT : b] ◦ check inTypebit(b) ◦ compute σ1 ◦ output [sendSR: cb]−−→ {b, cb}

∅
input [inR

OT : b] ◦ check ¬inTypebit(b) ◦ compute ∅
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ {b, abort}

{b, cb}
input [receiveSR: cx] ◦ check verEvalPack...(cx,cb) ◦ compute σ2 ◦ output [outROT : xb]−−→ {b, cb, cx, xb}

{b, cb}
input [receiveSR: cx] ◦ check ¬verEvalPack...(cx,cb) ◦ compute ∅−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ {b, cb, abort}

where σ1 =

{
encryptbit,R,R(b, r)

cb

}
and σ2 =

{
decryptR(cx)

xb

}

Figure 4.6: Formal player programme PR
OT for OT receiver

AuthAB
.
= input∅[sendAB : x]; output[leakAB : x]; input∅[inflAB : y]; output[receiveAB : x]; stop

Figure 4.7: Programme for an authenticated channel AuthAB

pevale(v1, v2, w1, w2)→ v

isValue(x)→ b

eqValue(v, w)→ b

inTypeU (v)→ b

inTypeT (v)→ b

isPair(x)→ b

pair(x, y)→ z

first(z)→ x

second(z)→ y

isConst(x)→ b

eqConstc(v)→ b

Figure 4.8: Operations available to plain programmes

Note that condition (v) is only needed to obtain a simplified symbolic model and our models
and results may easily be adapted to avoid this condition15. Note also that condition (iv) and
(v) could be enforced by the operation modules, but to keep these simple we instead add the
conditions here.

4.2.4 Real Protocols

The first class of systems in consideration is real protocols. The central components of real
protocols are given by two player programmes, PA and PB . These may have both plain and
crypto ports, and may perform cryptographic operations. They may also use authenticated
channels as a resource; these are simple predefined channel programmes given in Figure 4.7
that accept a single input from one player and delivers it to the another, allowing the adversary
to see the transmitted message as well as to choose when it is delivered (but not to change
it). The players may also use ideal functionalities as a resource; these are triples of plain
programmes that may only have plain ports and operate only on values and constants. The
programmes have no cryptographic material and may only use the operations in Figure 4.8.

Programme PA for player A is furthermore given the public key of both parties (ekA and
ekB), the commitment key of both parties (ckA and ckB), the CRS of both parties (crsA
and crsB), and its own decryption key (dkA), but it may only use these in accordance with
Figure 4.9. The keys and operations given to programme PB for player B follows symmetrically.

15The relevant implication of the condition is that no randomness (or counter) component is needed in the
intermediate and symbolic representation of proofs. Our results carry over both if this randomness component
is chosen by the adversary or honestly by his operation module (since programmes cannot depend on anything

4.2. PROTOCOL MODEL 67

(as the operations for plain programmes in Figure 4.8...)

decryptdkA(x)→ v

isEncPack(x)→ b

encryptT,ek,crsA(v, r)→ c

verEncPackT,ek,crsB (c)→ b

isComPack(x)→ b

commitU,ckA,crsA(v, r)→ d

verComPackU,ckB ,crsB (d)→ b

isEvalPack(x)→ b

evale,ek,ckA,crsA(c1, c2, v1, r1, v2, r2)→ c

verEvalPacke,ek,ckB ,crsB (c, c1, c2)→ b

verEvalPacke,ek,ckB ,crsB (c, c1, c2, d1, d2)→ b

Figure 4.9: Operations available to player programme PA – with ek ∈ {ekA, ekB}

Denote by AuthAB and AuthBA the parallel composition of two sets of authenticated chan-
nels from A to B and B to A, respectively (ie. AuthAB

.
= AuthAB,1 � · · · �AuthAB,n). Denote

by

FAB .
= FAB

1 � · · · � FAB
` FA .

= FA
1 � · · · � FA

` FB .
= FB

1 � · · · � FB
`

the parallel composition of a set of ` functionalities. A real protocol is then defined as follows:

Definition 4.2.1 (Real protocol). Let the following components be given:

• two player programmes PA and PB describing the supposed behaviour of A and B

• a system AuthAB of authenticated channels from A to B

• a system AuthBA of authenticated channels from B to A

• a system triple of plain programmes (FAB ,FA,FB) with the same number in each

such that the systems

SysAB
real

.
= PA �AuthAB �AuthBA � FAB � PB

SysAreal
.
= PA � FA

SysBreal
.
= PB � FB

forms a real protocol through triple (SysAB
real ,SysAreal ,SysBreal) with the player programmes PA

and PB as the cryptographic programmes.

Note that the players are not parameterised by the corruption scenario; the same pro-
grammes are used in all three cases (but only present if honest). On the other hand, function-
alities are allowed to be aware about the corruption scenario.

4.2.5 Ideal Protocols

The other class of systems that we shall consider is ideal protocols. The main component of these
is a target ideal functionality F again given by a triple of plain programmes. They also contain
simulator programmes that may behave differently depending on the corrupt scenario: in case
both players are honest, the simulator programme SimAB,A for player A may use the operations
in Figure 4.10, and symmetrically for the simulator for player B; in case only player A is honest

about proofs except their correctness, in particular not their identity).

68 CHAPTER 4. UNIVERSALLY COMPOSABLE SYMBOLIC ANALYSIS

(as the operations for plain programmes in Figure 4.8...)

isComPack(x)→ b

simcommitU,ckA,simtdA(v, r)→ d

verComPackU,ckB ,crsB (d)→ b

isEncPack(x)→ b

simencryptT,ek,simtdA(v, r)→ c

verEncPackT,ek,crsB (c)→ b

isEvalPack(x)→ b

simevale,ek,ckA,simtdA(c1, c2, v1, r1, v2, r2)→ c

simevale,ek,ckA,simtdA(v, c1, c2, d1, d2)→ c

verEvalPacke,ek,ckB ,crsB (x, x1, x2, y1, y2)→ b

Figure 4.10: Operations available to simulator SimAB,A when both honest – ek ∈ {ekA, ekB}

the simulator SimA may use the operations in Figure 4.11, and again symmetrically for when
only B is honest. Intuitively, the simulators are always offered the public components (ekA,
ekB , ckA, ckB , crsA and crsB) and additionally the simulation trapdoor for honest players and
the extraction trapdoors for corrupt players. Note that a player programme may be turned into
a simulator programme since the latter may use its extraction operations in place of decryption.

Finally, the simulators also have access to the same resources, authenticated channels and
functionalities, as a real protocol. However, we here denote the latter as simulated functionali-
ties Sk that are still just triples of plain programmes16.

(as the operations for simulator programmes in Figure 4.10...)

extractEncextdB (c)→ v

extractComextdB (d)→ v

extractEval1,extdB (c)→ v

extractEval2,extdB (c)→ v

Figure 4.11: Operations available to simulator programme SimA when only A is honest

Definition 4.2.2 (Ideal protocol). Let the following components be given:

• a target functionality F =
(
FAB ,FA,FB

)
• two simulator programmes SimAB,A and SimAB,B for when both players are honest

• one simulator programme SimA for when only A is honest

• one simulator programme SimB for when only B is honest

• two systems of authenticated channels AuthAB and AuthBA

• a system triple of plain programmes (SAB ,SA,SB) with the same number in each

such that the systems

SysAB
ideal

.
= FAB � SimAB,A �AuthAB �AuthBA � SAB � SimAB,B

SysAideal
.
= FA � SimA � SA

SysBideal
.
= FB � SimB � SB

forms an ideal protocol Sys ideal through triple (SysAB
ideal ,SysAideal ,SysBideal) and with the simula-

tors as the cryptographic programmes.

16We use a different name here since the resource functionalities in an ideal protocol need not be related to
those found in the real protocol to which the ideal protocol is being compared.

4.2. PROTOCOL MODEL 69

4.2.6 Oblivious Transfer Functionality

As a showcase we here give the complete description of the OT protocol from earlier sections.
The real protocol contains the two players programmes PR

OT and PS
OT given in Figure 4.3.

Formally the real protocol becomes(
PS
OT �AuthRS �AuthSR � PR

OT , PS
OT , PR

OT

)
with one authenticated channel in each direction and no functionalities.

For the ideal protocol we first consider the ideal OT functionality and simulators when
both players are honest; these are given in Figure 4.12 and we see that the simulators simply
run the original protocol on constants. The flow of the protocol for this case is shown in
Figure 4.13. For the case where only S is honest we have the ideal functionality and simulator
in Figure 4.14 where the simulator extracts the challenge bit b from the encryption sent by the
corrupted receiver. For the final case where only R is honest we have the ideal functionality and
simulator in Figure 4.15 where the simulator first sends a constant challenge bit zero but then
opens the commitments from the corrupt sender to learn both his inputs. The ideal protocol
becomes(
FSR

OT � SimSR,R
OT �AuthRS �AuthSR � SimSR,S

OT , FS
OT � SimS

OT , FR
OT � SimR

OT

)
when combined with the authenticated channels.

In Section 4.7 we use ProVerif to conclude that the systems of these two triples are indis-
tinguishable.

FSR
OT

.
= input∅[in

R
OT : b];

if inTypebit(b) then

output[leakROT : breceived];

input∅[inflSOT : getInput];

output[outSOT : getInput];

input∅[in
S
OT : x01];

if isPair(x01) then

let x0 ← first(x01);

let x1 ← second(x01);

if isValue(x0) then

if isValue(x1) then

output[leakSOT : xsreceived];

input∅[inflROT : finish];

if eqValue(b, 0) then

output[outROT : x0];

stop

else

output[outROT : x1];

stop

SimSR,S
OT

.
= input∅[receiveRS : cb];

if verEncPackbit,R,R(cb) then

output[inflSOT : getInput];

input∅[leakSOT : xsreceived];

let cx ← simevalsel,R,S,S(cb, 0, r0, 0, r1);

output[sendSR : cx];

stop

SimSR,R
OT

.
= input∅[leakROT : breceived];

let cb ← simencryptbit,R,R(0, rb);

output[sendRS : cb];

input∅[receiveSR : cx];

if verEvalPacksel,R,S,S(cx, cb) then

output[inflROT : finish];

stop

Figure 4.12: Ideal OT functionality and simulators for when both players are honest

70 CHAPTER 4. UNIVERSALLY COMPOSABLE SYMBOLIC ANALYSIS

AuthRS

SimSR,R
OTSimSR,S

OT

AuthSR

FSR
OT

1 : b

1 : breceived

1 : cb

1 : cb2 : deliver

2 : cb

2 : getInput

2 : getInput

3 : x01

3 : xsreceived

3 : cx
3 : cx 4 : deliver

4 : cx

4 : finish

4 : xb

Figure 4.13: Links and message flow of ideal OT protocol when both players are honest

FS
OT

.
= input∅[inflOT : b];

if inTypebit(b) then

output[outSOT : getInput];

input∅[in
S
OT : x01];

if isPair(x01) then

let x0 ← first(x01);

let x1 ← second(x01);

if isValue(x0) then

if isValue(x1) then

if eqValue(b, 0) then

output[leakOT : x0];

stop

else

output[leakOT : x1];

stop

SimS
OT

.
= input∅[receiveRS : cb];

if verEncPackbit,R,R(cb) then

let b← extractEncR(cb);

output[inflOT : b];

input∅[leakOT : xb];

let cx ← simevalsel,R,S,S(xb, cb, 0, r0, 0, r1);

output[sendSR : cx];

stop

Figure 4.14: Ideal OT functionality and simulator for when only S is honest

4.2. PROTOCOL MODEL 71

FR
OT

.
= input∅[in

R
OT : b];

if inTypebit(b) then

output[leakOT : breceived];

input∅[inflOT : x01];

if isPair(x01) then

let x0 ← first(x01);

let x1 ← second(x01);

if isValue(x0) then

if isValue(x1) then

if eqValue(b, 0) then

output[outROT : x0];

stop

else

output[outROT : x1];

stop

SimR
OT

.
= input∅[leakOT : breceived];

let cb ← simencryptbit,R,R(0, rb);

output[sendRS : cb];

input∅[receiveSR : cx];

if verEvalPacksel,R,S,S(cx, cb) then

let x0 ← extractEval1,R(cx);

let x1 ← extractEval2,R(cx);

let x01 ← pair(x0, x1);

output[inflOT : x01];

stop

Figure 4.15: Ideal OT functionality and simulator for when only R is honest

72 CHAPTER 4. UNIVERSALLY COMPOSABLE SYMBOLIC ANALYSIS

4.2.7 Commitment Functionality

As a stepping stone towards presenting the coin-flip (CF) functionality below, we here give
a generic commitment functionality parameterised by a type dom for the committed value.
Note that in the CF functionality below we only use the ideal commitment functionality Fcom

presented here and hence together these examples also illustrates compositional analysis of
protocols.

The commitment functionality intuitively allows a committer C to convince opener O that
he has committed himself to a value v, without revealing v to O. At a later point C may choose
to open the commitment and reveal the value to O, at the same time convincing him that the
value he learns is really the value v committed to earlier.

Figure 4.16 shows player programme PC for committer C and PO for opener O. The
expression is given by minus

.
= α − β and is used to check that the value in commitment d

send by C in the first step is also the value in encryption c send in the final step when opening
with (c, c0); the check performed by O verifies that c0 decrypts to 0. Note that the ack step is
included so that we may again only use simple programmes17. The real protocol becomes(

PC
com �AuthCO,1 �AuthOC �AuthCO,2 � PO

com , PC
com , PO

com

)
with three authenticated channels and no resource functionalities.

The ideal commitment functionality Fcom and simulators for the three corruption scenarios
are given in Figure 4.17, 4.18, and Figure 4.19. The ideal protocol becomes(

FCO
com � SimCO,C

com �AuthCO,1 �AuthOC �AuthCO,2 � SimCO,O
com ,

FC
com � SimS

com , FO
com � SimR

com

)
again with three authenticated channels and no resource functionalities.

PC
com

.
= input∅[in

C
com : x];

if inTypedom(x) then

let d← commitdom,C,C(x, rd);

output[sendCO,1 : d];

input∅[receiveOC : ack];

output[outCcom : ack];

input∅[in
C
com : open];

let c← encryptdom,O,C(x, rc);

let c0 ← evalminus,O,C,C(c, x, rd);

output[sendCO,2 : (c, c0)];

stop

PO
com

.
= input∅[receiveCO,1 : d];

if verComPackdom,C,C(d) then

output[outOcom : committed];

input∅[in
O
com : ack];

output[sendOC : ack];

input∅[receiveCO,2 : (c, c0)];

if verEncPackdom,O,C(c) then

if verEvalPackminus,O,C,C(c0, c, d) then

let x0 ← decryptO(c0);

if eqValue(x0, 0) then

let x← decryptO(c);

output[outOcom : x];

stop

Figure 4.16: Player programme PC
com for committer (left) and PO

com for opener (right)

17Without the ack message the adversary may force the opener to receive the opening (c, c0) before the
commitment d; to ensure that no message is lost we could then no longer describe the opener by a simple
programme.

4.2. PROTOCOL MODEL 73

FCO
com

.
= input∅[in

C
com : x];

if inTypedom(x) then

output[leakCcom : delayedcommitted];

input∅[inflOcom : continue];

output[outOcom : committed];

input∅[in
O
com : ack];

output[leakOcom : delayedack];

input∅[inflCcom : continue];

output[outCcom : ack]

input∅[in
C
com : open];

output[leakCcom : delayedopen];

input∅[inflOcom : continue];

output[outOcom : x];

stop

SimCO,C
com

.
= input∅[leakCcom : delayedcommitted];

let d← simcommitdom,C,C(0, rd);

output[sendCO,1 : d];

input∅[receiveOC : ack];

output[inflCcom : continue];

input∅[leakCcom : delayedopen];

let c← simencryptdom,O,C(0, rc);

let c0 ← simevalminus,O,C,C(c, 0, rd);

output[sendCO,2 : (c, c0)];

stop

SimCO,C
com

.
= input∅[receiveCO,1 : d];

output[inflOcom : continue];

input∅[leakOcom : delayedack];

output[sendOC : ack];

input∅[receiveCO,2 : (c, c0)];

output[inflOcom : continue];

stop

Figure 4.17: Ideal commitment functionality and simulators for when both players are honest

FC
com

.
= input∅[in

C
com : x];

if inTypedom(x) then

output[leakcom : committed];

input∅[inflcom : ack];

output[outCcom : ack]

input∅[in
C
com : open];

output[leakcom : x];

stop

SimC
com

.
= input∅[leakcom : committed];

let d← simcommitdom,C,C(0, rd);

output[sendCO,1 : d];

input∅[receiveOC : ack];

output[inflcom : ack];

input∅[leakcom : x];

let c← simencryptdom,O,C(x, rc);

let c0 ← simevalminus,O,C,C(0, c, d);

output[sendCO,2 : (c, c0)];

stop

Figure 4.18: Ideal commitment functionality and simulator for when only committer is honest

74 CHAPTER 4. UNIVERSALLY COMPOSABLE SYMBOLIC ANALYSIS

FO
com

.
= input∅[inflcom : x];

if inTypedom(x) then

output[outOcom : committed];

input∅[in
O
com : ack];

output[leakcom : ack];

input∅[inflcom : open];

output[outOcom : x];

stop

SimO
com

.
= input∅[receiveCO,1 : d];

if verComPackdom,C,C(d) then

let x← extractComC(d);

output[inflcom : x];

input∅[leakcom : ack];

output[sendOC : ack];

input∅[receiveCO,2 : (c, c0)];

if verEncPackdom,O,C(c) then

if verEvalPackminus,O,C,C(c0, c, d) then

let x0 ← extractEncC(c0);

if eqValue(x0, 0) then

output[inflcom : open];

stop

Figure 4.19: Ideal commitment functionality and simulator for when only opener is honest

4.2. PROTOCOL MODEL 75

4.2.8 Coin-flip Functionality

Our coin-flip functionality takes bit a from A and bit b from B as input, and returns c = a⊕ b
to both of them18. The security guarantee is that both coins are chosen independently. This is
ensured by first letting A commit to a using commitment functionality Fcom from above. Then
B sends b to A in cleartext so that she may compute c. Finally, A opens her commitment to
B who may now also compute c.

Let Fcom be the commitment functionality from above instantiated with dom = bit , and
define expression xor(α1, α2)

.
= α1 + α2 − 2 · α1 · α2. The programme PA

CF for player A is then
given in Figure 4.20 together with programme PB

CF for player B. Note that since the protocol
uses the commitment functionality, PB

CF must use input{outOcom}[· : ·] twice to ensure that no
message is lost in the scenario where A is corrupt and the adversary instructs the commitment
functionality to open before it is supposed to. When both players are honest they may be
removed to yield a simple programme. The real protocol becomes(

PA
CF �AuthAB �AuthBA � FCO

com � PB
CF , PA

CF � FC
com , PB

CF � FO
com

)
with two authenticated channels and the commitment functionality.

The ideal coin-flip functionality FCF , its simulators, and simulated commitment function-
ality Scom are given in Figure 4.21, 4.22, and 4.23 for the three corruption scenarios. The
simulated commitment functionality differs from Fcom in that the committer specifies the “com-
mitted” value when opening. The ideal protocol becomes(

FAB
CF � SimAB,A

CF �AuthAB �AuthBA � SCO
com � SimAB,B

CF ,

FA
CF � SimA

CF � SCcom , FB
CF � SimB

CF � SOcom
)

with two authenticated channels and the simulated commitment functionality.

PA
CF

.
= input∅[in

A
cf : a];

if inTypebit(a) then

output[inCcom : d];

input∅[outCcom : ack];

output[sendAB : proceed];

input∅[receiveBA : b];

if inTypebit(b) then

let c← pevalxor (a, b);

output[outAcf : c];

input∅[in
A
cf : outputToB];

output[inCcom : open];

stop

PB
CF

.
= input∅[outOcom : committed];

output[inOcom : ack];

input{outOcom}[receiveAB : proceed];

output[outBcf : getInput];

input{outOcom}[in
B
cf : b];

if inTypebit(b) then

output[sendBA : b];

input∅[outOcom : a];

let c← pevalxor (a, b);

output[outBcf : c];

stop

Figure 4.20: Player programme PA
CF for A (left) and PB

CF for B (right)

18Note that our protocol model does not allow programmes (and hence players) to pick a random value.
In the case of coin-flipping this means that the coins must come from the environment. This also implies
that functionalities cannot abstract output distributions as is typically done. Further discussion is given in
Section 4.8.

76 CHAPTER 4. UNIVERSALLY COMPOSABLE SYMBOLIC ANALYSIS

SimAB,A
CF

.
= input∅[leakAcf : receivedInputFromA];

output[inCcom : fakeCommit];

input∅[outCcom : ack];

output[sendAB : proceed];

input∅[receiveBA : b];

output[inflAcf : outputToA];

input∅[leakAcf : a];

output[inCcom : a];

stop

SimAB,B
CF

.
= input∅[outOcom : committed];

output[inOcom : ack];

input∅[receiveAB : proceed];

output[inflBcf : getInputFromB];

input∅[leakBcf : b];

output[sendBA : b];

input∅[outOcom : a];

output[inflBcf : continue];

stop

FAB
CF

.
= input∅[in

A
cf : a];

if inTypebit(a) then

output[leakAcf : receivedInputFromA];

input∅[inflBcf : getInputFromB];

output[outBcf : getInput];

input∅[in
B
cf : b];

if inTypebit(b) then

output[leakBcf : b];

input∅[inflAcf : outputToA];

let c← pevalxor (a, b);

output[outAcf : c]

input∅[in
A
cf : outputToB];

output[leakAcf : a];

input∅[inflBcf : continue];

output[outBcf : c];

stop

SCO
com

.
= input∅[in

C
com : fakeCommit];

output[leakCcom : delayedcommitted];

input∅[inflOcom : continue];

output[outOcom : committed];

input∅[in
O
com : ack];

output[leakOcom : delayedack];

input∅[inflCcom : continue];

output[outCcom : ack]

input∅[in
C
com : x];

output[leakCcom : delayedopen];

input∅[inflOcom : continue];

output[outOcom : x];

stop

Figure 4.21: Ideal CF functionality, simulators, and simulated functionality when both are
honest

4.2. PROTOCOL MODEL 77

SimA
CF

.
= input∅[leakcf : receivedInputFromA];

output[inCcom : fakeCommit];

input∅[outCcom : ack];

output[sendAB : proceed];

input∅[receiveBA : b];

if inTypebit(b) then

output[inflcf : b];

input∅[leakcf : a];

output[inCcom : a];

stop

FA
CF

.
= input∅[in

A
cf : a];

if inTypebit(a) then

output[leakcf : receivedInputFromA];

input∅[inflcf : b];

if inTypebit(b) then

let c← pevalxor (a, b);

output[outAcf : c]

input∅[in
A
cf : outputToB];

output[leakAcf : a];

stop

SC
com

.
= input∅[in

C
com : fakeCommit];

output[leakcom : committed];

input∅[inflcom : ack];

output[outCcom : ack]

input∅[in
C
com : x];

output[leakcom : x];

stop

Figure 4.22: Ideal CF functionality, simulator, and simulated functionality for only A honest

78 CHAPTER 4. UNIVERSALLY COMPOSABLE SYMBOLIC ANALYSIS

SimB
CF

.
= input∅[outOcom : (committed, a)];

output[inOcom : ack];

input{outOcom}[receiveAB : proceed];

output[inflcf : a];

input{outOcom}[leakcf : b];

output[sendBA : b];

input∅[outOcom : open];

output[inflcf : outputToB];

stop

FB
CF

.
= input∅[inflcf : a];

if inTypebit(a) then

output[outBcf : getInput];

input∅[in
B
cf : b];

if inTypebit(b) then

output[leakcf : b];

input∅[inflcf : outputToB];

let c← pevalxor (a, b);

output[outBcf : c];

stop

SO
com

.
= input∅[inflcom : x];

if inTypebit(x) then

output[outOcom : (committed, x)];

input∅[in
O
com : ack];

output[leakcom : ack]

input∅[inflcom : open];

output[outOcom : open];

stop

Figure 4.23: Ideal CF functionality, simulator, and simulated functionality when only B
honest

4.2. PROTOCOL MODEL 79

4.2.9 Multiplication Triple Functionality

As an exercise in expressibility19 we next consider the Πtrip protocol given by Bendlin et al.
in [BDOZ11], and used in the offline phase of their MPC protocol to securely generate random
shares of multiplication triples between a set of players. We instantiate the protocol for the
generation of a single triple between two players, denoted 1 and 2, under static corruption.
In other words, the two players respectively generate shares (a1, b1, c1) and (a2, b2, c2) with
information theoretic MACs. Moreover, since we cannot model the probabilistic choice20 in the
final check of Πtrip we consider a variant where this check is pushed to the online phase (much
like in [DPSZ12]) and allowing an error: define a = a1 + a2, b = b1 + b2, and c = c1 + c2; when
both players are honest our variation makes no difference and we require that a · b = c as in
the original protocol; however, when one player is corrupt we now require that a · b = c+ e for
some error e known by the adversary.

The two player programmes P 1
trip and P 2

trip are given in Figure 4.24 and 4.25 respectively;
since the protocol is already complex enough, we here present it slightly informally for readabil-
ity, yet expressing all programmes in our formal language is straight-forward. The first thing
to notice it that the two players receive all their random choices from the environment. This
is again because we cannot model probabilistic choice, yet if this formulation is secure then
clearly the formulation where the randomness is instead drawn honestly from a distribution is
also secure. One consequence of this is that the same exact values must now be computed by
the protocol and the ideal functionality, and hence the latter is now slightly less abstract than
what we might prefer as we shall see. The second thing to notice is that the players are now
sending an encryption of 0 together with the initial commitment to their α. This is because
we cannot directly give a proof that a ciphertext under encryption ek was constructed using
the plaintext value of another ciphertext under a different encryption key. Concretely, we for
instance have that when player 1 commits to a1 by sending ciphertext21 Ca1 he must do so
under his own encryption key ek1 to keep it secret; however he must also prove that he used
the same plaintext when he later constructs Cx2 under ek2.

The ideal functionality F12
trip for when both players are honest are given in Figure 4.26. The

only thing to notice here is that c1 is now computed to match the exact value returned by
player 1. However, in the formulation where z1 is honestly drawn from a distribution instead of
being provided by the environment c1 is effectively drawn as in the original ideal functionality.
Simulators for when both players are honest is given in Figure 4.27 and 4.28; they simply
execute the protocol using constants.

Figure 4.29 gives the ideal functionality F1
trip when only player 1 is honest. Unlike F12

trip it
now expects the adversary to provide an error value e such that c = c1 + c2 = e; the simulator
in Figure 4.30 computes this value by extracting values from the corrupted player 2.

Finally, the ideal functionality F1
trip for the symmetric case where only player 2 is honest is

given in Figure 4.31 and its simulator in Figure 4.32. Here the error value e is extracted from
player 1 instead.

19Our attempts at verifying the equivalences using ProVerif were not conclusive as the tool never terminated.
A significant factor here seemed to be the many input parameters needed to model the probabilistic choices.

20While we may analyse some probabilistic choices, the kind used here falls into another category which it is
unclear how to capture; see Section 4.8 for more discussion.

21Note that he cannot commit to a1 using only a commitment since player 2 later needs Ca1 to form Cm(a1).

80 CHAPTER 4. UNIVERSALLY COMPOSABLE SYMBOLIC ANALYSIS

1. On input (α2, a1, b1, βa2 , βb2 , βc2 , z1) on port in1
trip

a) check that all values are in the domain

b) let Dα2 ← commitdom,ck1,crs1(α2, rα2)

c) let C02 ← encryptdom,ek2,crs1(0, r02)

d) send (Dα2 , C02) to player 2

2. On receiving (Dα1 , C01) from player 2

a) check verComPackdom,ck2,crs2(Dα1) and verEncPackdom,ek1,crs2(C01)

b) check decryptdk1(C01) = 0

c) let Da1 ← commitdom,ck1,crs1(a1, ra1) and Ca1 ← evalplus,ek1,ck1,crs1(C01 , a1, ra1)

d) let Db1 ← commitdom,ck1,crs1(b1, rb1) and Cb1 ← evalplus,ek1,ck1,crs1(C01 , b1, rb1)

e) send (Da1 , Ca1 ,Db1 , Cb1) to player 2

3. On receiving (Da2 , Ca2 ,Db2 , Cb2) from player 2

a) check verComPackdom,ck2,crs2(Da2) and verEvalPackplus,ek2,ck2,crs2(Ca2 , C02 ,Da2)

b) check verComPackdom,ck2,crs2(Db2) and verEvalPackplus,ek2,ck2,crs2(Cb2 , C02 ,Db2)

c) let Cx2 ← evalmultplus,ek2,ck1,crs1(Cb2 , a1, ra1 , z1, rz1)

d) send Cx2 to player 2

4. On receiving Cx1 from player 2

a) check verEvalPackmultplus,ek1,ck2,crs2(Cx1 , Cb1 ,Da2)

b) let x1 ← decryptdk1(Cx1)

c) let c1 = a1 · b1 + x1 − z1
d) let Cc1 ← encryptdom,ek1,crs1(c1, rc1)

e) send Cc1 to player 2

5. On receiving Cc2 from player 2

a) check verEncPackdom,ek2,crs2(Cc2)

b) let Cm(a2) ← evalmultplus,ek2,ck1,crs1(Ca2 , α2, rα2 , βa2 , rβa2
)

c) let Cm(b2) ← evalmultplus,ek2,ck1,crs1(Cb2 , α2, rα2 , βb2 , rβb2)

d) let Cm(c2) ← evalmultplus,ek2,ck1,crs1(Cc2 , α2, rα2 , βc2 , rβc2)

e) send
(
Cm(a2), Cm(b2), Cm(c2)

)
to player 2

6. On receiving
(
Cm(a1), Cm(b1), Cm(c1)

)
from player 2

a) check verEvalPackmultplus,ek1,ck2,crs2(Cm(a1), Ca1 ,Dα1)

b) check verEvalPackmultplus,ek1,ck2,crs2(Cm(b1), Cb1 ,Dα1)

c) check verEvalPackmultplus,ek1,ck2,crs2(Cm(c1), Cc1 ,Dα1)

d) let m(a1)← decryptdk1(Cm(a1))

e) let m(b1)← decryptdk1(Cm(b1))

f) let m(c1)← decryptdk1(Cm(c1))

g) output
(
c1,m(a1),m(b1),m(c1)

)
on port out1trip

Figure 4.24: Player P 1
trip for multiplication triple generation

4.2. PROTOCOL MODEL 81

1. On receiving (Dα2 , C02) from player 1

a) check verComPackdom,ck1,crs1(Dα2) and verEncPackdom,ek2,crs1(C02)

b) check decryptdk2(C02) = 0

c) output getInput on port out2trip

2. On input (α1, a2, b2, βa1 , βb1 , βc1 , z2) on port in2
trip

a) check that all values are in the domain

b) let Dα1 ← commitdom,ck2,crs2(α1, rα1)

c) let C01 ← encryptdom,ek1,crs2(0, r01)

d) send (Dα1 , C01) to player 1

3. On receiving (Da1 , Ca1 ,Db1 , Cb1) from player 1

a) check verComPackdom,ck1,crs1(Da1) and verEvalPackplus,ek1,ck1,crs1(Ca1 , C01 ,Da1)

b) check verComPackdom,ck1,crs1(Db1) and verEvalPackplus,ek1,ck1,crs1(Cb1 , C01 ,Db1)

c) let Da2 ← commitdom,ck2,crs2(a2, ra2) and Ca2 ← evalplus,ek2,ck2,crs2(C02 , a2, ra2)

d) let Db2 ← commitdom,ck2,crs2(b2, rb2) and Cb2 ← evalplus,ek2,ck2,crs2(C02 , b2, rb2)

e) send (Da2 , Ca2 ,Db2 , Cb2) to player 1

4. On receiving Cx2 from player 1

a) check verEvalPackmultplus,ek2,ck1,crs1(Cx2 , Cb2 ,Da1)

b) let x2 ← decryptdk2(Cx2)

c) let Cx1 ← evalmultplus,ek1,ck2,crs2(Cb1 , a2, ra2 , z2, rz2)

d) send Cx1 to player 1

5. On receiving Cc1 from player 1

a) check verEncPackdom,ek1,crs1(Cc1)

b) let c2 = a2 · b2 + x2 − z2
c) let Cc2 ← encryptdom,ek2,crs2(c2, rc2)

d) send Cc2 to player 1

6. On receiving
(
Cm(a2), Cm(b2), Cm(c2)

)
from player 1

a) check verEvalPackmultplus,ek2,ck1,crs1(Cm(a2), Ca2 ,Dα2)

b) check verEvalPackmultplus,ek2,ck1,crs1(Cm(b2), Cb2 ,Dα2)

c) check verEvalPackmultplus,ek2,ck1,crs1(Cm(c2), Cc2 ,Dα2)

d) let m(a2)← decryptdk2(Cm(a2))

e) let m(b2)← decryptdk2(Cm(b2))

f) let m(c2)← decryptdk2(Cm(c2))

g) output
(
c2,m(a2),m(b2),m(c2)

)
on port out2trip

7. On input outputTo1 on port in2
trip

a) let Cm(a1) ← evalmultplus,ek1,ck2,crs2(Ca1 , α1, rα1 , βa1 , rβa1
)

b) let Cm(b1) ← evalmultplus,ek1,ck2,crs2(Cb1 , α1, rα1 , βb1 , rβb1)

c) let Cm(c1) ← evalmultplus,ek1,ck2,crs2(Cc1 , α1, rα1 , βc1 , rβc1)

d) send
(
Cm(a1), Cm(b1), Cm(c1)

)
to player 1

Figure 4.25: Player P 2
trip for multiplication triple generation

82 CHAPTER 4. UNIVERSALLY COMPOSABLE SYMBOLIC ANALYSIS

1. On input (α2, a1, b1, βa2 , βb2 , βc2 , z1) on port in1
trip

a) check that all values are in the domain

b) leak input1Received on port leak1
trip

2. On influence getInput on port infl2
trip

a) output getInput on port out2trip

3. On input (α1, a2, b2, βa1 , βb1 , βc1 , z2) on port in2
trip

a) check that all values are in the domain

b) leak input2Received on port leak2
trip

4. On influence outputTo2 on port infl2
trip

a) let a = a1 + a2, b = b1 + b2, and c = a · b
b) let c1 = a1 · b1 + a2 · b1 + z2 − z1 and c2 = c− c1
c) let m(a2) = α2 · a2 + βa2 , m(b2) = α2 · b2 + βb2 , and m(c2) = α2 · c2 + βc2
d) output

(
c2,m(a2),m(b2),m(c2)

)
on port out2trip

5. On input outputTo1 on port in2
trip

a) leak outputTo1 on port leak2
trip

6. On influence outputTo1 on port infl1
trip

a) let m(a1) = α1 · a1 + βa1 , m(b1) = α1 · b1 + βb1 , and m(c1) = α1 · c1 + βc1
b) output

(
c1,m(a1),m(b1),m(c1)

)
on port out1trip

Figure 4.26: Triple generation functionality F12
trip when both players are honest

4.2. PROTOCOL MODEL 83

1. On leakge input1Received on port leak1
trip

a) let Dα2 ← simcommitdom,ck1,simtd1(0, rα2)

b) let C02 ← simencryptdom,ek2,simtd1
(0, r02)

c) send (Dα2 , C02) to player 2

2. On receiving (Dα1 , C01) from player 2

a) let Da1 ← simcommitdom,ck1,simtd1(0, ra1) and Ca1 ← simevalplus,ek1,ck1,simtd1(C01 , 0, ra1)

b) let Db1 ← simcommitdom,ck1,simtd1(0, rb1) and Cb1 ← simevalplus,ek1,ck1,simtd1(C01 , 0, rb1)

c) send (Da1 , Ca1 ,Db1 , Cb1) to player 2

3. On receiving (Da2 , Ca2 ,Db2 , Cb2) from player 2

a) let Cx2 ← simevalmultplus,ek2,ck1,simtd1(Cb2 , 0, ra1 , 0, rz1)

b) send Cx2 to player 2

4. On receiving Cx1 from player 2

a) let Cc1 ← simencryptdom,ek1,simtd1
(0, rc1)

b) send Cc1 to player 2

5. On receiving Cc2 from player 2

a) let Cm(a2) ← simevalmultplus,ek2,ck1,simtd1(Ca2 , 0, rα2 , 0, rβa2
)

b) let Cm(b2) ← simevalmultplus,ek2,ck1,simtd1(Cb2 , 0, rα2 , 0, rβb2)

c) let Cm(c2) ← simevalmultplus,ek2,ck1,simtd1(Cc2 , 0, rα2 , 0, rβc2)

d) send
(
Cm(a2), Cm(b2), Cm(c2)

)
to player 2

6. On receiving
(
Cm(a1), Cm(b1), Cm(c1)

)
from player 2

a) influence outputTo1 on port infl1
trip

Figure 4.27: Simulator Sim12,1
trip when both players are honest

84 CHAPTER 4. UNIVERSALLY COMPOSABLE SYMBOLIC ANALYSIS

1. On receiving (Dα2 , C02) from player 1

a) influence getInput on port infl2
trip

2. On leakage input2Received on port leak2
trip

a) let Dα1 ← simcommitdom,ck2,simtd2(0, rα1)

b) let C01 ← simencryptdom,ek1,simtd2
(0, r01)

c) send Dα1 , C01 to player 1

3. On receiving (Da1 , Ca1 ,Db1 , Cb1) from player 1

a) let Da2 ← simcommitdom,ck2,simtd2(0, ra2) and Ca2 ← simevalplus,ek2,ck2,simtd2(C02 , 0, ra2)

b) let Db2 ← simcommitdom,ck2,simtd2(0, rb2) and Cb2 ← simevalplus,ek2,ck2,simtd2(C02 , 0, rb2)

c) send (Da2 , Ca2 ,Db2 , Cb2) to player 1

4. On receiving Cx2 from player 1

a) let Cx1 ← simevalmultplus,ek1,ck2,simtd2(Cb1 , 0, ra2 , 0, rz2)

b) send Cx1 to player 1

5. On receiving Cc1 from player 1

a) let Cc2 ← simencryptdom,ek2,simtd2
(0)

b) send Cc2 to player 1

6. On receiving
(
Cm(a2), Cm(b2), Cm(c2)

)
from player 1

a) influence outputTo2 on port infl2
trip

7. On leakage outputTo1 on port leak2
trip

a) let Cm(a1) ← simevalmultplus,ek1,ck2,simtd2(Ca1 , 0, rα1 , 0, rβa1
)

b) let Cm(b1) ← simevalmultplus,ek1,ck2,simtd2(Cb1 , 0, rα1 , 0, rβb1)

c) let Cm(c1) ← simevalmultplus,ek1,ck2,simtd2(Cc1 , 0, rα1 , 0, rβc1)

d) send
(
Cm(a1), Cm(b1), Cm(c1)

)
to player 1

Figure 4.28: Simulator Sim12,2
trip when both honest players are honest

4.2. PROTOCOL MODEL 85

1. On input (α2, a1, b1, βa2 , βb2 , βc2 , z1) on port in1
trip

a) check that all values are in the domain

b) leak input1Received on port leak trip

2. On influence (α1, a2, b2) on port infl trip

a) check that all values are in the domain

b) leak x2 = b2 · a1 + z1 on port leak trip

3. On influence (c2, e) on port infl trip

a) check that both values are in the domain

b) let a = a1 + a2, b = b1 + b2, and c = a · b
c) let c1 = c− c2 − e
d) let m(a2) = α2 · a2 + βa2 , m(b2) = α2 · b2 + βb2 , and m(c2) = α2 · c2 + βc2
e) leak

(
m(a2),m(b2),m(c2)

)
on port leak trip

4. On influence (βa1 , βb1 , βc1) on port infl trip

a) check that all values are in the domain

b) let m(a1) = α1 · a1 + βa1 , m(b1) = α1 · b1 + βb1 , and m(c1) = α1 · c1 + βc1
c) output

(
c1,m(a1),m(b1),m(c1)

)
on port out1trip

Figure 4.29: Triple generation functionality F1
trip when only player 1 is honest

86 CHAPTER 4. UNIVERSALLY COMPOSABLE SYMBOLIC ANALYSIS

1. On leakage input1Received on port leak trip

a) let Dα2 ← simcommitdom,ck1,simtd1(0, rα2)

b) check C02 ← simencryptdom,ek2,simtd1
(0, r02)

c) send (Dα2 , C02) to player 2

2. On receiving (Dα1 , C01) from player 2

a) check verComPackdom,ck2,crs2(Dα1) and verEncPackdom,ek1,crs2(C01)

b) check extractEncextd2(C01) = 0

c) let α1 ← extractComextd2(Dα1)

d) let Da1 ← simcommitdom,ck1,simtd1(0, ra1) and Ca1 ← simevalplus,ek1,ck1,simtd1(C01 , 0, ra1)

e) let Db1 ← simcommitdom,ck1,simtd1(0, rb1) and Cb1 ← simevalplus,ek1,ck1,simtd1(C01 , 0, rb1)

f) send (Da1 , Ca1 ,Db1 , Cb1) to player 2

3. On receiving (Da2 , Ca2 ,Db2 , Cb2) from player 2

a) check verComPackdom,ck2,crs2(Da2) and verEvalPackplus,ek2,ck2,crs2(Ca2 , C02 ,Da2)

b) check verComPackdom,ck2,crs2(Db2) and verEvalPackplus,ek2,ck2,crs2(Cb2 , C02 ,Db2)

c) let a2 ← extractComextd2(Da2) and b2 ← extractComextd2(Db2)

d) influence (α2, a2, b2) on port infl trip

4. On leakage x2 on port leak trip

a) let Dz1 ← simcommitdom,ck1,simtd1(0, rz1)

b) let Cx2 ← simevalmultplus,ek2,ck1,simtd1(x2, Cb2 ,Da1 ,Dz1)

c) send Cx2 to player 2

5. On receiving Cx1 from player 2

a) check verEvalPackmultplus,ek1,ck2,crs2(Cx1 , Cb1 ,Da2 ,Dz2)

b) let z2 ← extractEval2,extd2(Cx1)

c) let Cc1 ← simencryptdom,ek1,simtd1
(0, rc1)

d) send Cc1 to player 2

6. On receiving Cc2 from player 2

a) check verEncPackdom,ek2,crs2(Cc2)

b) let c2 ← extractEncextd2(Cc2)

c) let e = a2 · b2 + x2 − z2 − c2
d) influence (c2, e) on port infl trip

7. On leakage
(
m(a2),m(b2),m(c2)

)
on port leak trip

a) let Dβa2
← simcommitdom,ck1,simtd1(0, rβa2

)

b) let Dβb2 ← simcommitdom,ck1,simtd1(0, rβb2)

c) let Dβc2 ← simcommitdom,ck1,simtd1(0, rβc2)

d) let Cm(a2) ← simevalmultplus,ek2,ck1,simtd1(m(a2), Ca2 ,Dα2 ,Dβa2
)

e) let Cm(b2) ← simevalmultplus,ek2,ck1,simtd1(m(b2), Cb2 ,Dα2 ,Dβb2)

f) let Cm(c2) ← simevalmultplus,ek2,ck1,simtd1(m(c2), Cc2 ,Dα2 ,Dβc2)

g) send
(
Cm(a2), Cm(b2), Cm(c2)

)
to player 2

8. On receiving
(
Cm(a1), Cm(b1), Cm(c1)

)
from player 2

a) check verEvalPackmultplus,ek1,ck2,crs2(Cm(a1), Ca1 ,Dα1)

b) check verEvalPackmultplus,ek1,ck2,crs2(Cm(b1), Cb1 ,Dα1)

c) check verEvalPackmultplus,ek1,ck2,crs2(Cm(c1), Cc1 ,Dα1)

d) let βa1 ← extractEval2,extd2(Cm(a1))

e) let βb1 ← extractEval2,extd2(Cm(b1))

f) let βc1 ← extractEval2,extd2(Cm(c1))

g) influence (βa1 , βb1 , βc1) on port infl trip

Figure 4.30: Simulator Sim1
trip when only player 1 is honest

4.2. PROTOCOL MODEL 87

1. On influence α2 on port infl trip

a) check that it is in the domain

b) output getInput on port out2trip

2. On input (α1, a2, b2, βa1 , βb1 , βc1 , z2) on port in2
trip

a) check that all values are in the domain

b) leak input2Received on port leak trip

3. On influence (a1, b1) on port infl trip

a) check that all values are in the domain

b) leak x1 = b1 · a2 + z2 on port leak trip

4. On influence (c1, e, βa2 , βb2 , βc2) on port infl trip

a) check that all values are in the domain

b) let a = a1 + a2, b = b1 + b2, and c = a · b
c) let c2 = c− c1 − e
d) let m(a2) = α2 · a2 + βa2 , m(b2) = α2 · b2 + βb2 , and m(c2) = α2 · c2 + βc2
e) output

(
c2,m(a2),m(b2),m(c2)

)
on port out2trip

5. On input outputTo1 on port in2
trip

a) let m(a1) = α1 · a1 + βa1 , m(b1) = α1 · b1 + βb1 , and m(c1) = α1 · c1 + βc1
b) leak

(
m(a1),m(b1),m(c1)

)
on port leak trip

Figure 4.31: Triple generation functionality F2
trip when only player 2 is honest

88 CHAPTER 4. UNIVERSALLY COMPOSABLE SYMBOLIC ANALYSIS

1. On receiving (Dα2 , C02) from player 1

a) check verComPackdom,ck1,crs1(Dα2) and verEncPackdom,ek2,crs1(C02)

b) check extractEncextd1(C02) = 0

c) let α2 ← extractComextd1(Dα2)

d) influence α2 on port infl trip

2. On input input2Received on port leak trip

a) let Dα1 ← simcommitdom,ck2,simtd2(0, rα1)

b) let C01 ← simencryptdom,ek1,simtd2
(0, r01)

c) send (Dα1 , C01) to player 1

3. On receiving (Da1 , Ca1 ,Db1 , Cb1) from player 1

a) check verComPackdom,ck1,crs1(Da1) and verEvalPackplus,ek1,ck1,crs1(Ca1 , C01 ,Da1)

b) check verComPackdom,ck1,crs1(Db1) and verEvalPackplus,ek1,ck1,crs1(Cb1 , C01 ,Db1)

c) let a1 ← extractComextd1(Da1)

d) let b1 ← extractComextd1(Db1)

e) let Da2 ← simcommitdom,ck2,simtd2(0, ra2) and Ca2 ← simevalplus,ek2,ck2,simtd2(C02 , 0, ra2)

f) let Db2 ← simcommitdom,ck2,simtd2(0, rb2) and Cb2 ← simevalplus,ek2,ck2,simtd2(C02 , 0, rb2)

g) send (Da2 , Ca2 ,Db2 , Cb2) to player 1

4. On receiving Cx2 from player 1

a) check verEvalPackmultplus,ek2,ck1,crs1(Cx2 , Cb2 ,Da1)

b) let z1 ← extractEval2,extd1(Cx2)

c) influence (a1, b1) on port infl trip

5. On leakage x1 on port leak trip

a) let Dz2 ← simcommitdom,ck2,simtd2(0, rz2)

b) let Cx1 ← simevalmultplus,ek1,ck2,simtd2(x1, Cb1 ,Da2 ,Dz2)

c) send Cx1 to player 1

6. On receiving Cc1 from player 1

a) check verEncPackdom,ek1,crs1(Cc1)

b) let c1 ← extractEncextd1(Cc1)

c) let Cc2 ← simencryptdom,ek2,simtd2
(0, rc2)

d) send Cc2 to player 1

7. On receiving
(
Cm(a2), Cm(b2), Cm(c2)

)
from player 1

a) check verEvalPackmultplus,ek2,ck1,crs1(Cm(a2), Ca2 ,Dα2)

b) check verEvalPackmultplus,ek2,ck1,crs1(Cm(b2), Cb2 ,Dα2)

c) check verEvalPackmultplus,ek2,ck1,crs1(Cm(c2), Cc2 ,Dα2)

d) let βa2 ← extractEval2,extd1(Cm(a1))

e) let βb2 ← extractEval2,extd1(Cm(b1))

f) let βc2 ← extractEval2,extd1(Cm(c1))

g) let e = a1 · b1 + x1 − z1 − c1
h) influence (c1, e, βa2 , βb2 , βc2) on port infl trip

8. On leakage
(
m(a1),m(b1),m(c1)

)
on port leak trip

a) let Dβa1
← simcommitdom,ck1,simtd1(0, rβa1

)

b) let Dβb1 ← simcommitdom,ck1,simtd1(0, rβb1)

c) let Dβc1 ← simcommitdom,ck1,simtd1(0, rβc1)

d) let Cm(a1) ← simevalmultplus,ek1,ck2,simtd2(m(a1), Ca1 ,Dα1 ,Dβa1
)

e) let Cm(b1) ← simevalmultplus,ek1,ck2,simtd2(m(b1), Cb1 ,Dα1 ,Dβb1)

f) let Cm(c1) ← simevalmultplus,ek1,ck2,simtd2(m(c1), Cc1 ,Dα1 ,Dβc1)

g) send
(
Cm(a1), Cm(b1), Cm(c1)

)
to player 1

Figure 4.32: Simulator Sim2
trip when only player 2 is honest

4.3. PRELIMINARIES 89

4.3 Preliminaries

Our computational model is that of the UC framework as described in [Can01]. In this model
ITMs in a network communicate by writing to each others tapes, thereby passing on the right
to execute. In other words, the scheduling is token-based so that any ITM may only execute
when it is holding the token. Initially the special environment ITM Z holds the token. When
it writes on a tape of an ITM M in the network it passes on the token and M is now allowed
to execute. If the token ever gets stuck it goes back to the environment.

We say that two binary distribution ensembles X,Y are indistinguishable if for any c, d ∈ N
there exists κ0 ∈ N such that for all κ ≥ κ0 and all z ∈ ∪k≤κd{0, 1}k we have

∣∣Pr[X(κ, z) = 1]−
Pr[Y (κ, z) = 1]

∣∣ < κ−c. We write this as X ≈ Y . Next, for environment Z, adversary A, and
network N of ITMs, we write ExecZ,A,N (κ, z) for the random variable denoting the output bit
(guess) of Z after interacting withA and N , and denote ensemble {ExecZ,A,N (κ, z)}κ∈N,z∈{0,1}?
by ExecZ,A,N . We may then compare networks as follows:

Definition 4.3.1 (Computational Indistinguishability). Two networks of ITMs N1 and N2

are computational indistinguishability when no probabilistic polynomial time (PPT) adversary
A may allow a PPT environment Z to distinguish between them with more than negligible
probability, ie. we have ExecZ,A,N1 ≈ ExecZ,A,N2 . We write this as N1

c∼ N2.

By allowing different adversaries in the two networks we also obtain a notion of one network
implementing another, namely network N1 realises network N2 when, for any PPT A, there
exists a PPT simulator Sim such that for all PPT Z we have N1

c∼ N2.
Note that the class of environments is restricted to ensure that every execution runs in

polynomial time, ie. may be simulated by a single polynomial time ITM given the security
parameter κ and initial input z.

4.3.1 Commitment Scheme

A commitment scheme is given by PPT algorithms ComKeyGen(1κ)→ ck and Comck(V,R)→
D for key-generation and commitment, respectively. We require that the scheme is well-spread,
computationally binding and computationally hiding :

• well-spread: if no PPT adversary A may win the game in Fig. 4.33 with more than
negligible probability (in the security parameter)

• computationally binding: if no PPT adversary A may win the game in Figure 4.34
with more than negligible probability

• computationally hiding: if for all PPT adversaries A the combination of A and game
Gcom,hi0 is indistinguishable from A and game Gcom,hi1 , as given in Figure 4.35

where, well-spread intuitively means that it is hard to predict the outcome of honestly generating
a commitment.

1. Generate commitment key ck ← ComKeyGen(1κ) and send it to the adversary

2. Receive (V,D) from the adversary and check that V is a value in the domain

3. Pick bitstring R uniformly at random from {0, 1}κ and compute D′ ← Comck(V,R)

4. Adversary wins if D = D′

Figure 4.33: Security game Gcom,ws for a well-spread commitment scheme

90 CHAPTER 4. UNIVERSALLY COMPOSABLE SYMBOLIC ANALYSIS

1. Generate commitment key ck ← ComKeyGen(1κ) and send it to the adversary

2. Receive (V,R) and (V ′, R′) from the adversary and check that V and V ′ are values in the domain

3. Adversary wins if Comck(V,R) = Comck(V ′, R′) when V 6= V ′

Figure 4.34: Security game Gcom,bin for a computationally binding commitment scheme

1. Generate commitment key ck ← ComKeyGen(1κ) and send it to the adversary

2. Receive (V0, V1) from the adversary and check that they are values in the domain

3. Pick bitstring R uniformly at random from {0, 1}κ and compute D ← Comck(Vb, R) for choice
bit b

4. Send D to the adversary

Figure 4.35: Security game Gcom,hib for a computationally hiding commitment scheme

4.3.2 Homomorphic Encryption Scheme

An encryption scheme is given by three PPT algorithms EncKeyGen(1κ)→ (ek, dk), Encek(V,R)→
C, and Decdk(C)→ V . An homomorphic encryption scheme furthermore contains a PPT algo-
rithm Evale,ek(C1, C2, V1, V2, R)→ C for arithmetic expression e(x1, x2, y1, y2) and randomness
R for re-randomisation22. We require that the scheme is well-spread, correct, history hiding (or
formula private), and IND-CPA secure for the entire domain:

• well-spread: if no PPT adversary A may win neither the game in Figure 4.36 nor the
game in Figure 4.37 with more than negligible probability

• correct: if no PPT adversary A may win neither the game in Figure 4.38 nor the game
in Figure 4.39 with more than negligible probability

• history hiding: if for all PPT adversaries A the combination of A and game Genc,his0 is

indistinguishable from A and game Genc,his1 , as given in Figure 4.40

• IND-CPA: if for all PPT adversaries A the combination of A and game Genc,cpa0 is indis-
tinguishable from A and game Genc,cpa1 , as given in Figure 4.41

where correct intuitively means that decryption almost always success for well-formed cipher-
texts, and history hiding that a ciphertext produced using Evale,ek is distributed as Encek on
the same inputs.

1. Generate encryption and decryption key (ek, dk) ← EncKeyGen(1κ) and send both to the ad-
versary

2. Receive (V,C) from the adversary and check that V is a value in the domain

3. Pick bitstring R uniformly at random from {0, 1}κ and compute C′ ← Encek(V,R)

4. Adversary wins if C = C′

Figure 4.36: Security game Genc,encws for a well-spread encryption scheme

22Note that the scheme needs only support the operations used by a particular protocol, ie. it is for instance
not in all cases required to be fully homomorphic.

4.3. PRELIMINARIES 91

1. Generate encryption and decryption key (ek, dk) ← EncKeyGen(1κ) and send both to the ad-
versary

2. Receive (C1, C2,W1,W2, C) from the adversary and check that W1 and W2 are values in the domain

3. Pick bitstring R uniformly at random from {0, 1}κ and compute C′ ← Evale,ek(C1, C2,W1,W2, R)

4. Adversary wins if C = C′ when Decdk(C1) 6= ⊥ and Decdk(C2) 6= ⊥

Figure 4.37: Security game Genc,evalws for a well-spread encryption scheme

1. Generate encryption and decryption key (ek, dk) ← EncKeyGen(1κ) and send both to the ad-
versary

2. Receive (V,R) from the adversary and check that V is a value in the domain

3. Adversary wins if Decdk(Encek(V,R)) 6= V

Figure 4.38: Security game Genc,enccor for a correct encryption scheme

1. Generate encryption and decryption key (ek, dk) ← EncKeyGen(1κ) and send both to the ad-
versary

2. Receive (C1, C2,W1,W2, R) from the adversary and check that W1 and W2 are values in the domain

3. Compute V1 ← Decdk(C1) and V2 ← Decdk(C2) and check that V1 6= ⊥ and V2 6= ⊥

4. Adversary wins if Decdk(Evale,ek(C1, C2,W1,W2, R)) 6= e(V1, V2,W1,W2)

Figure 4.39: Security game Genc,evalcor for a correct encryption scheme

1. Generate encryption and decryption key (ek, dk) ← EncKeyGen(1κ) and send both to the ad-
versary

2. Receive (C1, C2,W1,W2) from the adversary and check that they are values in the domain

3. Compute V1 ← Decdk(C1) and V2 ← Decdk(C2) and check that V1 6= ⊥ and V2 6= ⊥

4. Pick bitstring R uniformly at random from {0, 1}κ

5. Compute C ←

{
Evale,ek(C1, C2,W1,W2, R) if b = 0

Encek
(
e(V1, V2,W1,W2), R

)
if b = 1

and send it to the adversary

Figure 4.40: Security game Genc,hisb for a history hiding encryption scheme

1. Generate encryption and decryption key (ek, dk)← EncKeyGen(1κ) and send ek to the adversary

2. Receive (V0, V1) from the adversary and check that they are values in the domain

3. Pick bitstring R uniformly at random from {0, 1}κ and compute C ← Encek(Vb, R) for choice bit
b

4. Send C to the adversary

Figure 4.41: Security game Genc,cpab for an IND-CPA secure encryption scheme

4.3.3 Non-Interactive Zero-Knowledge Proof-of-Knowledge Scheme

An NIZK-PoK scheme for binary relation R consists of PPT algorithms CrsGenR(1κ)→ crs,
SimCrsGenR(1κ) → (crs, simtd), ExCrsGenR(1κ) → (crs, extd), ProveR,crs(x,w) → π,
SimProveR,simtd(x) → π, VerR,crs(x, π) → {0, 1}, and deterministic ExtractR,extd(x, π) →

92 CHAPTER 4. UNIVERSALLY COMPOSABLE SYMBOLIC ANALYSIS

w. We require that such schemes are complete, computational zero-knowledge, and extractable:

• complete: if no PPT adversary A may win the game in Figure 4.42 with more than
negligible probability

• computational zero-knowledge: if for all PPT adversaries A the combination of A and
game Gnizk ,zk0 is indistinguishable from A and game Gnizk ,zk1 , as given in Figure 4.43

• extractable: if no PPT adversary A may win neither the game in Figure 4.44 nor the
game in Figure 4.45 with more than negligible probability

and assume instantiations for:

• RU =
{

(x,w)
∣∣D = Comck(V,R) ∧ V ∈ U

}
where x = (D, ck) and w = (V,R)

• RT =
{

(x,w)
∣∣C = Encek(V,R) ∧ V ∈ T

}
where x = (C, ek) and w = (V,R)

• Re =
{

(x,w)
∣∣C = Evale,ek(C1, C2, V1, V2, R) ∧Di = Comck(Vi, Ri)

}
where

x = (C,C1, C2, ek,D1, D2, ck) and w = (V1, R1, V2, R2, R)

1. Generate common reference string crs← CrsGen(1κ) and send it to the adversary

2. Receive (x,w) from the adversary

3. Adversary wins if VerR,crs(x,ProveR,crs(x,w)) = 0 when (x,w) ∈ R

Figure 4.42: Security game Gnizk ,complete for a complete NIZK scheme

1. If b = 0 then generate crs← CrsGen(1κ); if b = 1 then generate (crs, simtd)← SimCrsGen(1κ);
in both cases send crs to the adversary

2. Receive (x,w) from the adversary and check that (x,w) ∈ R

3. Compute π ←

{
ProveR,crs(x,w) if b = 0

SimProveR,simtd(x) if b = 1
and send it to the adversary

Figure 4.43: Security game Gnizk ,zkb for an computationally zero-knowledge NIZK scheme

1. If b = 0 then generate crs← CrsGen(1κ); if b = 1 then generate (crs, extd)← ExCrsGen(1κ)

2. Send crs to the adversary

Figure 4.44: Security game Gnizk ,exgenb for an extractable NIZK-PoK scheme

1. Generate CRS and extraction trapdoor (crs, extd)← ExCrsGen(1κ) and send crs to the adver-
sary

2. Receive (x, π) from the adversary and compute w ← ExtractR,extd(x, π)

3. Adversary wins if w = ⊥ or (x,w) 6∈ R

Figure 4.45: Security game Gnizk ,extract for an extractable NIZK-PoK scheme

4.4. REAL-WORLD INTERPRETATION 93

4.4 Real-world Interpretation

We here give a real-world computational interpretations of real and ideal protocols. First we
outline the general setup of the model, followed by the description of an ITM for executing
a programme P given access to an operation module implementing its available operations.
Finally we give the real-world implementation of the operation modules.

4.4.1 General Structure

In the interpretation RW(Sys) of a system Sys each programme P is executed by ITM MP

with access to its own operation module23 OP enforcing sanity checks on received messages
and implementing the operations available to P as described in Section 4.2. All messages send
between these entities are annotated bitstrings BS of the following kinds: 〈value : V 〉 and
〈const : Cn〉 for values and constants, 〈pair : BS1, BS2〉 for pairings, [comPack : D, ck, πU , crs]
for commitment packages, [encPack : C, ek, πT , crs] for encryption packages, and [evalPack :
C,C1, C2, ek,D1, D2, ck, πe, crs] for evaluation packages.

The real-world model also contains a setup functionality Fsetup connected to the operation
modules of the cryptographic programmes. It is set to support either a real or an ideal protocol,
is assumed to know the corruption scenario, and is responsible for generating and distributing
the cryptographic keys and trapdoors, including leaking the public and corrupted keys to the
adversary.

As an example, let SysABreal be a system for some real protocol using one functionality and two
authenticated channels. The real-world interpretation of it, RW(SysAB

real), is then illustrated in
Figure 4.46; the lines show the directional links between closed ports, and the dots represent
open ports; Figure 4.47 illustrates what it had looked like had it been an ideal protocol instead.
Note that we in both cases have inlined the operation modules for the plain programmes.

F real(AB)
setup

MFAB

MAuthAB

MAuthBA

MPA

Orw
A

MPB

Orw
B

Figure 4.46: Real-world interpretation of example real protocol when both players are honest

Using ITMs defined in the remaining part of this section we may formalise the general
structure as follows:

23We may think of an operation module simply as a functionality connected only to the owning M machine
and a setup functionality. However, we use the “operation module” terminology since this makes sense in
every interpretation. Furthermore, from a practical point of view it might seem arbitrary to have a separate
functionality for implementing the operations as it might as well be inlined in the M machine.

94 CHAPTER 4. UNIVERSALLY COMPOSABLE SYMBOLIC ANALYSIS

F ideal(AB)
setup

MSAB

MAuthAB

MAuthBA

MSimAB,A

Orw
A

MSimAB,B

Orw
B

MGAB

Figure 4.47: Real-world interpretation of example ideal protocol when both players are honest

Definition 4.4.1 (Real-world Interpretation). The real-world interpretation RW(Sys) of a
well-formed system Sys with programmes P1, . . . , Pn contains the machines MPi

together with
their operation modules Oi. It also contains the setup functionality Fsetup hardwired to match
whether Sys is a real or ideal protocol.

Besides the connections dictated by Sys, every machine MPi
is privately connected to Oi.

Finally, Fsetup is privately connected with the operation modules belonging to the (at most) two
cryptographic programmes.

4.4.2 Programme Interpretation

We next describe the ITM MP used for executing a programme P . The machine has input and
output ports corresponding to the ports of P , and has access to OP provinding methods

storePlain(BS)→ x, storeCryptockB ,crsB (BS)→ x, retrieve(x)→ BS

as well as methods corresponding to the operations available to P as outlined in Section 4.2;
for instance, the methods offered to MPA

for player A include

commitckA,crsA(v, r)→ d, encryptekB ,crsA(v, r)→ c, decryptdkA(c)→ v

which all take references as input and return the same.
Informally, when a message is received by an MP it is immediately passed to OP (which,

as we shall see below, among other things checks that every cryptographic package in it comes
with a correct proof generated under the other player’s CRS). If the message was accepted
by the operation module the machine gets back a reference through which it may access the
message in the future. It then executes the operations as dictated by the programme and finally
either halts or sends a message to another machine.

More formally, MP keeps in memory a position pc into programme tree P together with a set
of references to randomness and messages. Initially pc points to the root of P and the set only
contains randomness references (named RP) and message references to all values (named V);

4.4. REAL-WORLD INTERPRETATION 95

during execution references to received or computed messages are added and named according
to the variables in the programme24.

The execution of MP then happens in a loop. When a message BS is received on one of its
input ports pin it first checks if there is an outgoing edge with port pin at the node at position
pc of P . If this is not the case, the message is discarded and no state is updated. Otherwise MP

asks its operation module to store it by invoking storePlain(BS) or storeCryptock,crs(BS)
depending on the port type. It gets back a reference if the message was accepted and abort if
not; in the latter case the machine halts immediately.

It then names the reference xin and finds the edge where ψ is satisfied. It does so by
interacting with its operation module, possibly receiving temporary references in the process
that are discarded when no longer needed. For instance, an edge may have condition

ψ = verEvalPacksel,ekB ,ckA,crsA(c, c1, c2, d1, d2)

checking that an incoming evaluation package BS is the result of an homomorphic evaluation
on encryptions BS1, BS2 and values committed to by BS1, BS2 (the packages pointed to by
the references named c, c1, c2, d1 and d2 respectively). In processing this edge MP invokes
method verEvalPack... of its operation module OP . After finding the truth value of an edge
condition, it tells OP to discard all temporary references created (none in this example).

Having found the satisfied edge it continues to process the rest of the commands in the same
bottom-up manner as for conditions, again discarding all temporary references and keeping only
x1, . . . , xn. For instance, an edge may have command set{

decryptdkB (c)

xv

}
which intuitively stores the decrypted value under a reference named xv.

Finally, MP asks OP for the message associated with the output reference named xout and
sends it on the output port pout. The state of MP is updated with the position of the next
node along the executed edge.

4.4.3 Setup Functionality Fsetup

Before giving the implementation of the operation modules we describe the setup functionality
that provides them with cryptographic keys through special ports keysA and keysB .

The setup functionality is hardwired to operate in one of two modes, real or ideal, depend-
ing on the protocol. In both modes it generates keys for the commitment and the encryption
scheme using ComKeyGen and EncKeyGen, and uses the corruption scenario to determine
which decryption keys should be leaked. In mode real it always generates common reference
strings using CrsGen, while in mode ideal it uses a mix of SimCrsGen and ExCrsGen as
determined by the corruption scenario. The behaviour of Fsetup is summarised in Figure 4.48.

4.4.4 Real-world Implementation of Operation Module

The final piece is describing the real-world operation modules. Each module maintains a local
mapping µ between message references and bitstrings, and a local mapping ρ between ran-
domness references and bitstrings {0, 1}κ chosen uniformly at random when the module is first
initialised.

24One implementation of this would be for the machine to also keep a mapping between variables and
references. We abstract away this detail here and simply say that the variables are used to give local names to
the references known by the machine.

96 CHAPTER 4. UNIVERSALLY COMPOSABLE SYMBOLIC ANALYSIS

In mode real on corruption scenario H ∈ {AB ,A,B} behave as follows:

• generate ckA and ckB using ComKeyGen(1κ)

• generate (ekA, dkA) and (ekB , dkB) using EncKeyGen(1κ)

• generate crsA and crsB using CrsGen(1κ)

• let PK = {ckA, ckB , ekA, ekB , crsA, crsB} be the public keys

• send PK ∪ {dkid | id ∈ {A,B} is corrupt} on port keysleak

• for honest id ∈ {A,B} send PK ∪ {dkid} on port keysid

In mode ideal on corruption scenario H ∈ {AB ,A,B} behave as follows:

• generate ckA and ckB using ComKeyGen(1κ)

• generate (ekA, dkA) and (ekB , dkB) using EncKeyGen(1κ)

• for honest id ∈ {A,B} generate (crsid, simtdid) using SimCrsGen(1κ)

• for corrupt id ∈ {A,B} generate (crsid, extdid) using ExCrsGen(1κ)

• let PK = {ckA, ckB , ekA, ekB , crsA, crsB} be the public keys

• send PK ∪ {dkid | id ∈ {A,B} is corrupt} on port keysleak

• for honest id ∈ {A,B} send PK ∪ {extdid′ | id′ is corrupt} ∪ {simtdid} on port keysid

Figure 4.48: Real-world setup functionality Fsetup

It also maintains a list σ of encryptions received and generated by the player associating
them with their public key and their origin. This list serves the following purposes needed for
the soundness result in Section 4.5.4: (i) to ensure that all encryptions in evaluation packages
have the same encryption key ek since the πe proof does not guarantee this on its own25; (ii) to
ensure that the C1, C2 encryptions of evaluation packages are already known to the player26;
and (iii) to reject certain packages that an honest player would never have produced and which
cannot occur in the intermediate interpretation27.

The methods for storing received messages are then implemented in Figure 4.49. Methods
for plain operations are implemented in Figure 4.50, and for commitments, encryptions and
evaluations in Figure 4.51, 4.52 and 4.53. Finally, Figure 4.54 gives the implementations for
decryption and extraction operations.

25We need this because the intermediate implementation of evale fails when different encryption keys are
used. This may not be the case for the Evale procedure though as C1 and C2 are just bitstrings.

26This is required in order for C1, C2 to already have a counterpart in the intermediate model as a intermediate
representation of them cannot be extracted from the evaluation package alone (unlike the D1, D2 commitments).

27One example is if it receives two evaluation packages with the same C but with, say, different D1; an
honest player would have re-randomised the result thereby with overwhelming probability not produce the same
C twice. Another example is if it receives an evaluation and encryption package with the same C; again this
would only happen with negligible probability if the player was honest by our well-spread assumption.

4.4. REAL-WORLD INTERPRETATION 97

• storePlain(BS)→ x:

1. if acceptPlain(BS) returns false then return abort

2. otherwise pick a fresh reference x; store µ(x) 7→ BS; and return x

• storeCryptock,crs(BS)→ x:

1. if acceptCryptock,crs(BS) returns false then return abort

2. otherwise pick a fresh reference x; store µ(x) 7→ BS; and return x

• acceptPlain(BS)→ {true, false}:

– BS match 〈value : V 〉: verify that V may be parsed as a value; return true

– BS match 〈const : Cn〉: verify that Cn may be parsed as a constant; return true

– BS match 〈pair : BS1, BS2〉: verify acceptPlain(BS1) and acceptPlain(BS2); return true

– return false if none of the above apply or if any verification fails

• acceptCryptock,crs(BS)→ {true, false}:

– BS match 〈value : V 〉: verify that V may be parsed as a value; return true

– BS match 〈const : Cn〉: verify that Cn may be parsed as a constant; return true

– BS match 〈pair : BS1, BS2〉: verify acceptCryptock,crs(BS1) and acceptCryptock,crs(BS2);
return true

– BS match [comPack : D, ck, πU , crs]: verify that πU is a valid proof under crs of type U for
D, ck by running VerU,crs(D, ck, πU); return true

– BS match [encPack : C, ek, πT , crs] with ek ∈ {ekA, ekB}: verify that πT is a valid proof under
crs of type T for C, ek by running VerT,crs(C, ek, πT); check that σ(C, ek) ∈ {⊥, encother};
update σ(C, ek) 7→ encother; return true

– BS match [evalPack : C,C1, C2, ek,D1, D2, ck, πe, crs] with ek ∈ {ekA, ekB}: ver-
ify that πe is a valid proof under crs of expression e for C1, . . . , ck by running
Vere,crs(C,C1, C2, ek,D1, D2, ck, πe); verify that C1 and C2 are already known by the pro-
gramme and have the proper key by checking σ(C1, ek) 6= ⊥ and σ(C2, ek) 6= ⊥; verify that C
has not been defined before by checking σ(C, ek) 6= ⊥ =⇒ σ(C, ek) = evalother(BS); update
σ(C, ek) 7→ evalother(BS); return true

– return false if none of the above apply or if any verification fails

• retrieve(x)→ BS: return µ(x)

Figure 4.49: Real-world implementation of well-formed checks for programmes

98 CHAPTER 4. UNIVERSALLY COMPOSABLE SYMBOLIC ANALYSIS

• isConst(x)→ B: if µ(x) matches with 〈const : . . . 〉 then return true else false

• eqConstCn(x)→ B: if µ(x) matches with 〈const : Cn〉 then return true else false

• isValue(v)→ B: if µ(v) matches with 〈value : . . . 〉 then return true else false

• eqValue(v1, v2)→ B: for i ∈ [2] match µ(vi) with 〈value : Vi〉; return true if V1 = V2 else false

• inTypeU (v)→ B: match µ(v) with 〈value : V 〉; return true if V is in type U else false

• inTypeT (v)→ B: match µ(v) with 〈value : V 〉; return true if V is in type T else false

• pevalf (v1, v2, w1, w2)→ v: for i ∈ [2] match µ(vi) with 〈value : Vi〉 and µ(wi) with 〈value : Wi〉;
evaluate expression f on these values, ie. let V = f(V1, V2,W1,W2); pick fresh reference v, update
µ(v) 7→ 〈value : V 〉, and return v

• isPair(x)→ B: if µ(x) match with 〈pair : . . . 〉 then return true else false

• pair(x1, x2)→ x: pick fresh reference x, update µ(v) 7→ 〈pair : µ(x1), µ(x2)〉, and return x

• first(x) → x1: if µ(x) match with 〈pair : BS1, BS2〉 then pick fresh reference x1, update
µ(x1) 7→ BS1, and return x1; else return abort

• second(x) → x2: if µ(x) match with 〈pair : BS1, BS2〉 then pick fresh reference x2, update
µ(x2) 7→ BS2, and return x2; else return abort

Figure 4.50: Real-world implementation of plain operations for programmes

• isComPack(x)→ B: if µ(x) match with [comPack : . . .] then return true else false

• verComPackU,ck,crs(d)→ B: if µ(d) match with [comPack : −, ck, πU , crs] return true else false

• commitU,ck,crs(v, r)→ d:

1. match µ(v) with 〈value : V 〉 and check that V is in type U

2. let R = ρ(r) be the randomness associated with r

3. compute D ← Comck(V,R) and πU ← ProveU,crs(D, ck, V,R)

4. pick fresh reference d, update µ(d) 7→ [comPack : D, ck, πU , crs], and return d

• simcommitU,ck,simtd(v, r)→ d:

1. match µ(v) with 〈value : V 〉
2. let R = ρ(r) be the randomness associated with r

3. let crs be the CRS corresponding to simtd

4. compute D ← Comck(V,R) and πU ← SimProveU,simtd(D, ck)

5. pick fresh reference d, update µ(d) 7→ [comPack : D, ck, πU , crs], and return d

Figure 4.51: Real-world implementation of commitment operations for programmes

4.4. REAL-WORLD INTERPRETATION 99

• isEncPack(x)→ B: if µ(x) match with [encPack : . . .] then return true else false

• verEncPackT,ek,crs(x) → B: if µ(c) match with [encPack : −, ek, πT , crs] then return true else
false

• encryptT,ek,crs(v, r)→ c:

1. match µ(v) with 〈value : V 〉 and check that V is in type T

2. let R = ρ(r) be the randomness associated with r

3. compute C ← Encek(V,R) and πT ← ProveT,crs(C, ek, V,R)

4. update σ(C, ek) 7→ encme

5. pick fresh reference c, update µ(c) 7→ [encPack : C, ek, πT , crs], and return c

• simencryptT,ek,simtd(v, r)→ c:

1. match µ(v) with 〈value : V 〉
2. let R = ρ(r) be the randomness associated with r

3. let crs be the CRS corresponding to simtd

4. compute C ← Encek(V,R) and πT ← SimProveT,simtd(C, ek)

5. update σ(C, ek) 7→ encme

6. pick fresh reference c, update µ(c) 7→ [encPack : C, ek, πT , crs], and return c

Figure 4.52: Real-world implementation of encryption operations for programmes

100 CHAPTER 4. UNIVERSALLY COMPOSABLE SYMBOLIC ANALYSIS

• isEvalPack(x)→ B: if µ(x) match with [evalPack : . . .] then return true else false

• verEvalPacke,ek,ck,crs(c, c1, c2)→ B:

1. for i ∈ [2] match µ(ci) with [encPack : Ci, ek, . . .] or [evalPack : Ci, ek, . . .]

2. match µ(c) with [evalPack : −, C1, C2, ek,−,−, ck, πe, crs]
3. return true if successful else false

• verEvalPacke,ek,ck,crs(c, c1, c2, d1, d2)→ B:

1. for i ∈ [2] match µ(ci) with [encPack : Ci, ek, . . .] or [evalPack : Ci, ek, . . .]

2. for i ∈ [2] match µ(di) with [comPack : Di, ck, . . .]

3. match µ(c) with [evalPack : −, C1, C2, ek,D1, D2, ck, πe, crs]

4. return true if successful else false

• evale,ek,ck,crs(c1, c2, v1, r1, v2, r2)→ c:

1. for i ∈ [2] match µ(ci) with [encPack : Ci, ek, . . .] or [evalPack : Ci, ek, . . .]

2. for i ∈ [2] match µ(vi) with 〈value : Vi〉
3. for i ∈ [2] compute Di ← Comck(Vi, Ri)

4. pick fresh randomness R ∈ {0, 1}κ

5. compute C ← Evale,ek(C1, C2, V1, V2, R)

6. compute πe ← Provee,crs(C,C1, C2, ek,D1, D2, ck, V1, R1, V2, R2)

7. update σ(C, ek) 7→ evalme

8. pick fresh reference c, update µ(c) 7→ [evalPack : C,C1, C2, ek,D1, D2, ck, πe, crs], and return c

• simevale,ek,ck,simtd(c1, c2, v1, r1, v2, r2)→ c:

– (as evale,ek,ck,crs but using SimProvee,simtd instead of Provee,crs)

• simevale,ek,ck,simtd(v, c1, c2, d1, d2)→ c:

1. for i ∈ [2] match µ(ci) with [encPack : Ci, ek, . . .] or [evalPack : Ci, ek, . . .]

2. for i ∈ [2] match µ(di) with [comPack : Di, ck, . . .]

3. match µ(v) with 〈value : V 〉
4. pick fresh randomness R ∈ {0, 1}κ

5. let crs be the CRS corresponding to simtd

6. compute C ← Encek(V,R)

7. compute πe ← SimProvee,simtd(C,C1, C2, ek,D1, D2, ck)

8. update σ(C, ek) 7→ evalme

9. pick fresh reference c, update µ(c) 7→ [evalPack : C,C1, C2, ek,D1, D2, ck, πe, crs], and return c

Figure 4.53: Real-world implementation of evaluation operations for programmes

4.4. REAL-WORLD INTERPRETATION 101

• decryptdk(c)→ v:

1. match µ(c) with [encPack : C, ek, . . .] or [evalPack : C, ek, . . .]

2. check that dk is the decryption key for ek

3. compute V ← Decdk(C)

4. pick fresh reference v, update µ(v) 7→ 〈value : V 〉, and return v

• extractComextd(d)→ v:

1. let crs be the CRS corresponding to extd

2. match µ(d) with [comPack : D, ck, πU , crs]

3. compute (V,R)← ExtrU,extd(D, ck, πU)

4. pick fresh reference v, update µ(v) 7→ 〈value : V 〉, and return v

• extractEncextd(c)→ v:

1. let crs be the CRS corresponding to extd

2. match µ(c) with [encPack : C, ek, πT , crs]

3. compute (V,R) = ExtrT,extd(C, ek, πT)

4. pick fresh reference v, update µ(v) 7→ 〈value : V 〉, and return v

• extractEval1,extd(c)→ v1:

1. let crs be the CRS corresponding to extd

2. match µ(c) with [evalPack : C,C1, C2, ek,D1, D2, ck, πe, crs]

3. compute (V1, R1, V2, R2, R)← Extre,extd(C,C1, C1, ek,D1, D2, ck, πe)

4. pick fresh reference v1, update µ(v1) 7→ 〈value : V1〉, and return v1

• extractEval2,extd(c)→ v2:

– (as extractEval1,extd but returning V2 instead of V1)

Figure 4.54: Real-world implementation of decryption and extraction operations for pro-
grammes

102 CHAPTER 4. UNIVERSALLY COMPOSABLE SYMBOLIC ANALYSIS

4.5 Intermediate Interpretation

This section gives the computational interpretation used as an intermediate step in linking
the real-world interpretation with the symbolic interpretation given in Section 4.6. The main
difference in this model is that the cryptographic primitives are replaced with a global memory
to which the adversary only has restricted access in the form of a fixed set of methods.

4.5.1 General Structure

The intermediate interpretation has a number of similarities with the real-world interpretation:
besides having the same underlying computation model, the MP machines for executing pro-
grammes are also identical. However, the operation modules OP are different and the setup
functionality is replaced with a global memory accessible only to the operation modules and
Oadv offering access to the adversary through a fixed set of methods28. If we put all the mod-
ules together with the global memory we may think of them as simply a functionality Faux,
meaning that protocols in the intermediate interpretation are running in a Faux-hybrid model.

The basic principle is that all cryptographic messages passed around among the entities are
bitstrings drawn uniformly at random from {0, 1}κ, dubbed handles, and ranged over by H.
They are associated to data objects in the global memory that hold the plaintext values: com-
mitment objects take form (com : V,R, ck); encryption objects (enc : V,R, ek); proof objects29

(proofU : HD, ck, crs), (proofT : HC , ek, crs), and (proofe : HC , HC1
, HC2

, ek,HD1
, HD2

, ck, crs);
and finally packages by objects (comPack : HD, ck,Hπ, crs), (encPack : HC , ek,Hπ, crs), and
(evalPack : HC , HC1 , HC2 , ek,HD1 , HD2 , ck,Hπ, crs). The ck,ek,crs here are simply fixed con-
stants used to indicate the creator and owner of the objects. Values, constants, and pairing are
not stored in the global memory but instead encoded as in the real-world interpretation, yet
we shall also use H to range over these.

Definition 4.5.1 (Intermediate Interpretation). The intermediate interpretation I(Sys) of a
well-formed system Sys with programmes P1, . . . , Pn contains the machines MPi together with
their operation modules Oi. It also contains the operation module Oadv given to the adversary
and the global memory functionality Fmem.

Besides the connections dictated by Sys, every machine MPi
is privately connected to Oi,

and every Oi, including Oadv, is in turn privately connected to Fmem.

4.5.2 Intermediate Interpretation of Operation Modules

The operation modules follow their real-world counterpart somewhat straight-forwardly, yet
operates on the data object in the global memory instead of using the procedures of the prim-
itives. They still keep a local mapping ρ from randomness references r to random bitstrings R
drawn uniformly at random from {0, 1}κ at initialisation, and they still have a local memory µ
between references and messages.

The various implementations are given in Figure 4.55, 4.56, 4.57, 4.58 and 4.59 where γ
denotes the global memory (recall that H is used to range over both random handles, and
pairings of these with values and constants). Note that some guarantees are now provided
by the model itself as a consequence of the adversary being limited in what he may do; for

28An implication of this model is that every message is already somewhat well-formed in the sense that it is
either garbage or correctly generated through a method invocation.

29Note that proof objects do not have a randomness (or counter) component, meaning that there cannot be
several different proof objects for the same public parameters; intuitively it makes no difference as there is no
operation for programmes to check equality of proofs and packages, and since we do not allow programmes to
send back received packages. We have gone with this option to simplify the symbolic model but may easily
remove it and obtain the same results.

4.5. INTERMEDIATE INTERPRETATION 103

• storePlain(H)→ x:

1. if acceptPlain(H) returns false then return abort

2. otherwise pick a fresh reference x, store µ(x) 7→ H, and return x

• storeCryptock,crs(H)→ x:

1. if acceptCryptock,crs(H) returns false then return abort

2. otherwise pick a fresh reference x, store µ(x) 7→ H, and return x

• acceptPlain(H)→ B:

– H match 〈value : V 〉: verify that V may be parsed as a value; return true

– H match 〈const : Cn〉: verify that Cn may be parsed as a constant; return true

– H match 〈pair : H1, H2〉: verify acceptPlain(H1) and acceptPlain(H2); return true

– return false if none of the above apply or if any verification fails

• acceptCryptock,crs(H)→ B:

– H match 〈value : V 〉: verify that V may be parsed as a value; return true

– H match 〈const : Cn〉: verify that Cn may be parsed as a constant; return true

– H match 〈pair : H1, H2〉: verify acceptCryptock,crs(H1) and acceptCryptock,crs(H2); return
true

– γ(H) match (comPack : HD, ck,Hπ, crs): verify that γ(Hπ) match (proofU : HD, ck, crs); return
true

– γ(H) match (encPack : HC , ek,Hπ, crs) with ek ∈ {ekA, ekB}: verify that γ(Hπ) match
(proofT : HC , ek, crs); update σ(HC) 7→ ok; return true

– γ(H) match (evalPack : HC , HC1 , HC2 , ek,HD1 , HD2 , ck,Hπ, crs) with ek ∈ {ekA, ekB}: verify
that γ(Hπ) match (proofe : HC , HC1 , HC2 , ek,HD1 , HD2 , ck, crs); verify that HC1 and HC2 are
already known by the party by checking σ(HC1) = ok and σ(HC2) = ok; update σ(HC) 7→ ok;
return true

– return false if none of the above apply or if any verification fails

• retrieve(x)→ H: refresh all object handles in µ(x) and return the result

Figure 4.55: Intermediate implementation of storing etc. for programmes

instance, it is not possible for the adversary to construct packages with an invalid proof, and
even adversarial evaluated ciphertexts are correctly re-randomised. This justifies the fact that
less conditions are enforced using the σ list, and that in this model it is only needed to ensure
that an evaluation package received by a player is rejected if its sub-encryptions C1, C2 have
not already been received.

104 CHAPTER 4. UNIVERSALLY COMPOSABLE SYMBOLIC ANALYSIS

• isConst(x)→ B: if µ(x) match with 〈const : . . . 〉 then return true else false

• eqConstCn(x)→ B: if µ(x) match with 〈const : Cn〉 return true else false

• isValue(v)→ B: if µ(v) match with 〈value : . . . 〉 return true else false

• eqValue(v1, v2)→ B: if µ(vi) match 〈value : Vi〉 for i ∈ [2], and V1 = V2, return true else false

• inTypeU (v)→ B: if µ(v) match with 〈value : V 〉, and V is in type U , return true else false

• inTypeT (v)→ B: if µ(v) match with 〈value : V 〉, and V is in type T , return true else false

• pevalf (v1, v2, w1, w2)→ v: match µ(vi) with 〈value : Vi〉 and µ(wi) with 〈value : Wi〉; evaluate f
on these values, ie. let V = f(V1, V2,W1,W2); pick a fresh reference v, store µ(v) 7→ 〈value : V 〉,
and return v

• isPair(x)→ B: if µ(x) match with 〈pair : . . . 〉 then return true else false

• pair(x1, x2)→ x: pick a fresh reference x, store µ(x) 7→ 〈pair : µ(x1), µ(x2)〉, and return x

• first(x)→ x1: match µ(x) with 〈pair : H1, H2〉; pick fresh reference x1, store µ(x1) 7→ H1, and
return x1

• second(x)→ x2: match µ(x) with 〈pair : H1, H2〉; pick fresh reference x2, store µ(x2) 7→ H2, and
return x2

Figure 4.56: Intermediate implementation of plain operations

• isComPack(x)→ B: if γ(µ(x)) match with (comPack : . . .) then return true else false

• verComPackU,ck,crs(d) → B: if γ(µ(d)) match with (comPack : −, ck,Hπ, crs) and γ(Hπ) match
with (proofU : . . .) then return true else false

• commitU,ck,crs(v, r)→ d:

1. match µ(v) with 〈value : V 〉 and check that V is in type U

2. let R = ρ(r) be the randomness associated with r

3. pick handle HD uniformly at random from {0, 1}κ and store γ(HD) 7→ (com : V,R, ck)

4. pick handle Hπ uniformly at random from {0, 1}κ and store γ(Hπ) 7→ (proofU : HD, ck, crs)

5. pick handle H uniformly at random from {0, 1}κ and store γ(H) 7→ (comPack : HD, ck,Hπ, crs)

6. pick fresh reference d, store µ(d) 7→ H, and return d

• simcommitU,ck,simtd(v, r)→ d:

1. match µ(v) with 〈value : V 〉
2. let R = ρ(r) be the randomness associated with r

3. let crs be the CRS corresponding to simtd

4. pick handle HD uniformly at random from {0, 1}κ and store γ(HD) 7→ (com : V,R, ck)

5. pick handle Hπ uniformly at random from {0, 1}κ and store γ(Hπ) 7→ (proofU : HD, ck, crs)

6. pick handle H uniformly at random from {0, 1}κ and store γ(H) 7→ (comPack : HD, ck,Hπ, crs)

7. pick fresh reference d, store µ(d) 7→ H, and return d

Figure 4.57: Intermediate implementation of commitment packages

4.5. INTERMEDIATE INTERPRETATION 105

• isEncPack(x)→ B: if γ(µ(x)) match with (encPack : . . .) return true else false

• verEncPackT,ek,crs(c) → B: if γ(µ(c)) match with (encPack : −, ek,Hπ, crs) and γ(Hπ) with
(proofT : . . .) return true else false

• encryptT,ek,crs(v, r)→ c:

1. match µ(v) with 〈value : V 〉 and check that V is in type T

2. let R = ρ(r) be the randomness associated with r

3. pick handle HC uniformly at random from {0, 1}κ and store γ(HC) 7→ (enc : V,R, ek)

4. pick handle Hπ uniformly at random from {0, 1}κ and store γ(Hπ) 7→ (proofT : HC , ek, crs)

5. pick handle H uniformly at random from {0, 1}κ and store γ(H) 7→ (encPack : HC , ek,Hπ, crs)

6. update σ(HC) 7→ ok

7. pick fresh reference c, store µ(c) 7→ H, and return c

• simencryptT,ek,simtd(v, r)→ c:

1. match µ(v) with 〈value : V 〉
2. let crs be the CRS corresponding to simtd

3. let R = ρ(r) be the randomness associated with r

4. pick handle HC uniformly at random from {0, 1}κ and store γ(HC) 7→ (enc : V,R, ek)

5. pick handle Hπ uniformly at random from {0, 1}κ and store γ(Hπ) 7→ (proofT : HC , ek, crs)

6. pick handle H uniformly at random from {0, 1}κ and store γ(H) 7→ (encPack : HC , ek,Hπ, crs)

7. update σ(HC) 7→ ok

8. pick fresh reference c, store µ(c) 7→ H, and return c

Figure 4.58: Intermediate implementation of encryption packages

106 CHAPTER 4. UNIVERSALLY COMPOSABLE SYMBOLIC ANALYSIS

• isEvalPack(x)→ B: if γ(µ(x)) match with (evalPack : . . .) return true else false

• verEvalPacke,ek,ck,crs(c, c1, c2)→ B:

1. for i ∈ [2] match γ(µ(ci)) with (encPack : HCi . . .) or (evalPack : HCi . . .)

2. match γ(µ(c)) with (evalPack : −, HC1 , HC2 , ek,−,−, ck,Hπ, crs) and γ(Hπ) with (proofe :
. . .)

3. if all successful return true else false

• verEvalPacke,ek,ck,crs(c, c1, c2, d1, d2)→ B:

1. for i ∈ [2] match γ(µ(ci)) with (encPack : HCi . . .) or (evalPack : HCi . . .)

2. for i ∈ [2] match γ(µ(di)) with (comPack : HDi . . .)

3. match γ(µ(c)) with (evalPack : −, HC1 , HC2 , ek,HD1 , HD2 , ck,Hπ, crs) and γ(Hπ) with
(proofe : . . .)

4. if all successful return true else false

• evale,ek,ck,simtd(c1, c2, w1, r1, w2, r2)→ c:

1. for i ∈ [2] match γ(µ(ci)) with (encPack : HCi , ek . . .) or (evalPack : HCi ,−, ek . . .)
2. for i ∈ [2] match γ(HCi) with (enc : Vi . . .) and µ(wi) with 〈value : Wi〉
3. for i ∈ [2] let Ri = ρ(ri) be the randomness associated with ri
4. for i ∈ [2] pick handle HDi uniformly at random from {0, 1}κ, store γ(HDi) 7→ (com : Wi, Ri, ck)

5. pick randomness R uniformly at random from {0, 1}κ

6. let V = e(V1, V2,W1,W2) be the evaluation of e

7. pick handle HC uniformly at random from {0, 1}κ and store γ(HC) 7→ (enc : V,R, ek)

8. pick handle Hπ uniformly at random from {0, 1}κ and store γ(Hπ) 7→ (proofe :
HC , HC1 , HC2 , ek,HD1 , HD2 , ek, crs)

9. pick handles H uniformly at random from {0, 1}κ and store γ(H) 7→ (evalPack :
HC , HC1 , HC2 , ek,HD1 , HD2 , ck,Hπ, crs)

10. update σ(HC) 7→ ok

11. pick fresh reference c, store µ(c) 7→ H, and return c

• simevale,ek,ck,simtd(c1, c2, w1, r1, w2, r2)→ c:

– (as evale,ek,ck,crs)

• simevale,ek,ck,simtd(v, c1, c2, d1, d2)→ c:

1. for i ∈ [2] match γ(µ(ci)) with (encPack : HCi , ek . . .) or (evalPack : HCi ,−, ek . . .)
2. for i ∈ [2] match γ(µ(di)) with (comPack : HDi , ck . . .)

3. match µ(v) with 〈value : V 〉
4. let crs be the CRS corresponding to simtd

5. pick fresh randomness R uniformly at random from {0, 1}κ

6. pick handle HC uniformly at random from {0, 1}κ and store γ(HC) 7→ (enc : V,R, ek)

7. pick handle Hπ uniformly at random from {0, 1}κ and store γ(Hπ) 7→ (proofe :
HC , HC1 , HC2 , ek,HD1 , HD2 , ck, crs)

8. pick handles H uniformly at random from {0, 1}κ and store γ(H) 7→ (evalPack :
HC , HC1 , HC2 , ek,HD1 , HD2 , ck,Hπ, crs)

9. update σ(HC) 7→ ok

10. pick fresh reference c, store µ(c) 7→ H, and return c

Figure 4.59: Intermediate implementation of evaluation packages

4.5. INTERMEDIATE INTERPRETATION 107

• decryptdk(c)→ v:

1. let ek be the encryption key corresponding to dk

2. match γ(µ(c)) with (encPack : HC , ek, . . .) or (evalPack : HC , ek, . . .)

3. match HC with (enc : V, . . .)

4. pick fresh reference v, store µ(v) 7→ 〈value : V 〉, and return v

• extractComextd(d)→ v:

1. let crs be the CRS corresponding to extd

2. match γ(µ(d)) with (comPack : . . . , Hπ, crs)

3. match γ(Hπ) with (proofU : (com : V, . . .), . . .)

4. pick fresh reference v, store µ(v) 7→ 〈value : V 〉, and return v

• extractEncextd(c)→ v:

1. let crs be the CRS corresponding to extd

2. match γ(µ(c)) with (encPack : . . . , Hπ, crs)

3. match γ(Hπ) with (proofT : (enc : V, . . .), . . .)

4. pick fresh reference v, store µ(v) 7→ 〈value : V 〉, and return v

• extractEval1,extd(c)→ v1:

1. let crs be the CRS corresponding to extd

2. match γ(µ(c)) with (evalPack : . . . , Hπ, crs)

3. match γ(Hπ) with (proofe : . . . , (com : V1, . . .), (com : V2, . . .), . . .)

4. pick fresh reference v1, store µ(v1) 7→ 〈value : V1〉, and return v1

• extractEval2,extd(c)→ v2:

– (as extractEval1,extd but returning V2 instead of V1)

Figure 4.60: Intermediate implementation of decryption and extraction operations

108 CHAPTER 4. UNIVERSALLY COMPOSABLE SYMBOLIC ANALYSIS

isConst(H)→ B

isValue(H)→ B

isPair(H)→ B

isComPack(H)→ B

isEncPack(H)→ B

isEvalPack(H)→ B

pair(H1, H2)→ H

first(H)→ H1

second(H)→ H2

verComPackU (H)→ B

verEncPackT (H)→ B

verEvalPacke(H)→ B

commitU,ck,crs(V,R)→ H

encryptT,ek,crs(V,R)→ H

evale,ck,ek,crs(HC1 , HC2 , V1, R1, V2, R2)→ H

decryptdk(HC)→ V

comOf(H)→ HD gives handle to commitment object HD of commitment package H

encOf(H)→ HC gives handle to encryption object HC of enc. or eval. package H

encOfi(H)→ HCi gives handle to ith encryption object HCi of evaluation package H

comOfi(H)→ HDi gives handle to ith commitment object HDi of evaluation package H

isCkOfck(H)→ B indicates if ck is the commitment key used by package H

isEkOfek(H)→ B indicates if ek is the encryption key used by package H

isCrsOfcrs(H)→ B indicates if crs is the CRS used by package H

garbage(·)→ H returns a garbage object

eq(H,H ′)→ B indicates whether H and H ′ are handles for identical objects

Figure 4.61: Methods offered by the adversary’s operation functionality Oadv

4.5.3 The Adversary’s Operation Module

All methods shown in Figure 4.61 are offered to the adversary by his operation module30,
except decryptdk which is only offered in the corruption scenarios where the corresponding
player is corrupt. Their implementations follow straight-forwardly from the implementation of
the players’ operation modules, with the exception that they work directly on handles instead
of indirectly through references.

30The operations given to the adversary are determined by the methods needed by the translator T ? in
Section 4.5.4, ie. the adversary need not be given more methods than what is needed by T ?, making its
construction the crucial point at which to determine the interface offered to the adversary.

4.5. INTERMEDIATE INTERPRETATION 109

4.5.4 Soundness of the Intermediate Model

As part of the soundness theorem we first show that a real-world environment cannot distinguish
between interacting with RW(Sys) or I(Sys) for our systems Sys in consideration. To this end
we need to introduce the concept of a translator T parameterised by the corruption scenario and
making the two interpretations appear similar31. Throughout this section we use T [I(Sys)] to
denote hybrid interpretations where all crypto channels to the environment are rewired to run
through T , and plain channels are left untouched (the bitstrings sent on them already use the
same format in the two interpretations). We stress that while the simulator in ideal protocols
is per-protocol and must be constructed as part of the analysis, the translator introduced here
is per-framework and is constructed once and for all.32.

We first consider the case where (SysAB , SysA, SysB) is a well-formed real protocol, but
only focus on the first two cases as the third is symmetrical to the second. Our aim is to show
that RW(SysH)

c∼ T H?
[
I(SysH)

]
for the translator T? defined below, but as a first step we

show that these equivalences hold for the more powerful translator Ttrue,real. Through a series
of translators we then use the indistinguishability properties of the cryptographic primitives to
show that T H?

[
I(SysH)

]
is indistinguishable from T Htrue,real

[
I(SysH)

]
, and the result follows.

Let T AB
true,real be the translator defined in Figure 4.62. This translator emulates a setup

functionality Fsetup running in ideal mode and therefore obtains the common reference strings
crsA and crsB for the two honest players; by computational zero-knowledge of the NIZK scheme
the environment cannot distinguish by the fact that the translator is using this mode instead
of mode real. The translator also emulates the global memory functionality Fmem and may
hence look inside its data objects beyond what is allowed by Oadv .

Lemma 4.5.2. We have RW(SysAB)
c∼ T AB

true,real

[
I(SysAB)

]
.

Proof. We proceed by arguing that the two interpretations are indistinguishable at each acti-
vation by the environment. Firstly, since the environment may in this corruption scenario only
activate the honest entities through plain channels it is immediately clear that the bitstrings
sent by the environment may easily be translated to a matching counterpart in the intermediate
interpretation.

Secondly, to argue that the honest entities behave the same on each activation we use that
the relevant primitives are well-spread and hence the two interpretations with overwhelming
probability agree on when two commitments or encryptions are identical; this is needed for
the storing and verification methods to agree. By correctness of the encryption scheme it also
follows that the two interpretations agree on the plaintext values of encryptions.

Thirdly, by looking inside the global memory the translator may obtain both values and
randomness from the handles of the intermediate model that allows it to produce a leakage of
commitments and encryptions distributed as in RW(SysAB); to do this correctly for evaluation
packages it needs to keep the ε mapping of already processed encryptions. All proofs may be
produced using Prove since the cryptographic programmes in a real protocol can only produce
proofs for true statements. However, since no information is stored in the memory about
the randomness to use when generating the proofs we need the τ mapping to store already
translated packages. Specifically, consider the case where T AB

true,real must translate handle H

31In UC-terms the translator is simply a simulator for Faux used to show that the real-world interpretation
is a realisation of the intermediate interpretation. However, we use this wording to avoid too much overload.

32If we instead considered a framework with e.g. symmetric encryption then we would need a new translator.
It might be possible to compose several translators without having to redo all proofs, and thereby making it
easier to extend the primitives supported by symbolic analysis. In particular, if the protocol class does not
allow mixing two sets of primitives then it seems reasonable to assume that these translators would compose to
a framework supporting the combined primitives as long as they are used in a mutually exclusive fashion. We
do not investigate this further but refer to [CW11] for results in this direction.

110 CHAPTER 4. UNIVERSALLY COMPOSABLE SYMBOLIC ANALYSIS

• Handle H received on channel leakAB,i (ie. from honest A):

– isValue(H) returns true: send H on the corresponding channel

– isConstant(H) returns true: send H on the corresponding channel

– isPair(H) returns true: recursively process first(H) and second(H) to obtain bitstring BS1

and BS2; let BS = [pair : BS1, BS2] and send it on the corresponding channel

– isComPack(H) returns true: use the procedure in Figure 4.63 with ck = ckA and crs = crsA to
obtain bitstring BS; send it on the corresponding channel

– isEncPack(H) returns true: use the procedure in Figure 4.64 with crs = crsA to obtain bitstring
BS; send BS on the corresponding channel

– isEvalPack(H) returns true: use the procedure in Figure 4.65 with ck = ckA and crs = crsA
to obtain bitstring BS; send it on the corresponding channel

• Handle H received on channel leakBA,j (ie. from honest B):

– isValue(H) returns true: send H on the corresponding channel

– isConstant(H) returns true: send H on the corresponding channel

– isPair(H) returns true: recursively process first(H) and second(H) to obtain bitstring BS1

and BS2; let BS = [pair : BS1, BS2] and send it on the corresponding channel

– isComPack(H) returns true: use the procedure in Figure 4.63 with ck = ckB and crs = crsB to
obtain bitstring BS; send it on the corresponding channel

– isEncPack(H) returns true: use the procedure in Figure 4.64 with crs = crsB to obtain bitstring
BS; send BS on the corresponding channel

– isEvalPack(H) returns true: use the procedure in Figure 4.65 with ck = ckB and crs = crsB
to obtain bitstring BS; send it on the corresponding channel

• Bitstring BS received on channel inflAB,i or inflBA,j (ie. from the adversary):

– BS match 〈value : V 〉: send BS on the corresponding channel

– BS match 〈constant : Cn〉: send BS on the corresponding channel

– BS match 〈pair : BS1, BS2〉: recursively process BS1 and BS2 to obtain handles H1 and H2;
let H = pair(H1, H2) and send it on the corresponding channel

– otherwise use garbage(·) to create and send a garbage handle

Figure 4.62: Translator T AB
true,real

Processing of handle H with isComPack(H):

• if τ(H) = BS then return BS; otherwise:

1. look inside comOf(H) to obtain V and R

2. compute D ← Comck(V,R) and πU ← ProveU,crs(D, ck, V,R)

3. let BS = [comPackage : D, ck, πU , crs], store τ(H) 7→ BS, and return BS

Figure 4.63: Translator T AB
true,real – commitment package from honest player

Processing of handle H with isEncPack(H):

• if τ(H) = BS then return BS; otherwise

1. use isEkOfek(H) to determine which encryption key ek to use

2. let HC = encOf(H) and look inside HC to obtain V and R

3. compute C ← Encek(V,R) and πT ← ProveT,crs(C, ek, V,R), and store ε(HC) 7→ C

4. let BS = [encPackage : C, ek, πT , crs], store τ(H) 7→ BS, and return BS

Figure 4.64: Translator T AB
true,real – encryption package from honest player

4.5. INTERMEDIATE INTERPRETATION 111

Processing handle H with isEvalPack(H):

• if τ(H) = BS then return BS; otherwise:

1. use isEkOfek(H) to determine which encryption key ek to use

2. for i ∈ [2] look inside comOfi(H) to obtain Wi, Si and compute Di ← Comck(Wi, Si)

3. for i ∈ [2] let Ci = ε(encOfi(H)) and pick fresh randomness R ∈ {0, 1}κ

4. compute C ← Evale,ek(C1, C2,W1,W2, R) and store ε(encOf(H)) 7→ C

5. compute πe ← Provee,crs(C,C1, C2, ek,D1, D2, ck,W1, S1,W2, S2, R)

6. let BS = [evalPackage : C,C1, C2, ek,D1, D2, ck, πe, crs], store π(H) 7→ BS, and return BS

Figure 4.65: Translator T AB
true,real – evaluation package from honest player

presenting a commitment package (Figure 4.63). Assume first that τ(H) = ⊥ meaning that
this package has not been processed before. By looking inside the data object associated with
comOf(H) in the global memory it may obtain a value V and a randomness R, and hence
the commitment D generated using Com is distributed exactly as in RW(SysAB). As for
the proof, τ(H) = ⊥ implies that this is the first time πU will be send hence it will also be
distributed exactly as in RW(SysAB). For the case where τ(H) 6= ⊥ we need to argue that
resending the same translation is ok. If we had ignored τ and instead processed the package
again, looking in the global memory we would have ended up with the same commitment D,
so the only thing that could potentially be different in RW(SysAB) is the proof. However,
since the protocol is well-formed we have that commitU,ck,crs has been invoked at most once
for V,R by the sending programme and hence the package sent in RW(SysAB) also contains
the same proof. The cases where H is an encryption package (Figure 4.64) or an evaluation
package (Figure 4.65) are similar.

Next, let T A
true,real be the translator defined in Figure 4.66. This translator also emulates

the global memory functionality and the setup functionality Fsetup running in ideal mode
but obtains a simulation trapdoor simtdA for player A and an extraction trapdoor extdB for
player B; again by the NIZK scheme being computational zero-knowledge and extractable the
environment cannot tell that difference from the setup alone.

Lemma 4.5.3. We have RW(SysA)
c∼ T A

true,real

[
I(SysA)

]
.

Proof. The argument goes in much the same way as for when both players are honest, relying
on the logic of storeCrypto in the honest player’s operation module to not only ensure that
extraction is possible, but also to reject encryption and evaluation packages that would break
identity or which cannot be translated for more subtle reasons.

One thing to note is that when translating commitment packages from the corrupt player we
use the commitment D as the randomness component in the translated data object. This is to
ensure that the identity of commitments is preserved: we cannot use the extractable R since the
binding property of the scheme does not rule out the possibility that the adversary can come up
with R 6= R′ such that Comck(V,R) = Comck(V,R′). Using D as the randomness component
guarantees that identity is preserved amoung all commitments created by the corrupt player,
which is enough since the honest player will never compare one of them to a commitment that
he himself created (the commitment keys are different).

Likewise, we also use C as the randomness component when translating encryption packages.
However this time we cannot rely on the encryption key to separate the encryptions and must
instead keep the σ mapping which tags each encryption with type and creator, and ensures that

112 CHAPTER 4. UNIVERSALLY COMPOSABLE SYMBOLIC ANALYSIS

• Handle H received on channel leakAB,i (ie. from honest A):

– isValue(H) returns true: send H on the corresponding channel

– isConstant(H) returns true: send H on the corresponding channel

– isPair(H) returns true: recursively process first(H) and second(H) to obtain bitstrings BS1

and BS2; let BS = [pair : BS1, BS2] and send it on the corresponding channel

– isComPack(H) returns true: use the procedure in Figure 4.67 with ck = ckA and crs = crsA to
obtain bitstring BS; send it on the corresponding channel

– isEncPack(H) returns true: use the procedure in Figure 4.68 with crs = crsA to obtain bitstring
BS; send BS on the corresponding channel

– isEvalPack(H) returns true: use the procedure in Figure 4.69 with ck = ckA and crs = crsA
to obtain bitstring BS; send it on the corresponding channel

• Bitstring BS received on crypto channel inflBA,j (ie. from corrupt B):

– match BS with 〈value : V 〉: send BS on the corresponding channel

– match BS with 〈constant : Cn〉: send BS on the corresponding channel

– match BS with 〈pair : BS1, BS2〉: recursively process BS1 and BS2 to obtain H1 and H2; let
H = pair(H1, H2) and send it on the corresponding channel

– match BS with [comPack : . . .]: use the procedure in Figure 4.70 with ck = ckB , crs = crsB ,
and extd = extdB to obtain handle H; send it on the corresponding channel

– match BS with [encPack : . . .]: use the procedure in Figure 4.71 with crs = crsB and extd =
extdB to obtain handle H; send it on the corresponding channel

– match BS with [evalPack : . . .]: use the procedure in Figure 4.72 with ck = ckB , crs = crsB ,
and extd = extdB to obtain handle H; send it on the corresponding channel

– otherwise use garbage(·) to create and send a garbage handle

Figure 4.66: Translator T A
true,real

Processing of handle H with isComPack(H):

• if τ(H) = BS then return BS; otherwise:

1. look inside comOf(H) to obtain V and R

2. compute D ← Comck(V,R) and πU ← ProveU,crs(D, ck, V,R)

3. let BS = [comPackage : D, ck, πU , crs], store τ(H) 7→ BS, and return BS

Figure 4.67: Translator T A
true,real – commitment package from honest player

Processing of handle H with isEncPack(H):

• if τ(H) = BS then return BS; otherwise

1. use isEkOfek(H) to determine which encryption key ek to use

2. let HC = encOf(H) and look inside HC to obtain V and R

3. compute C ← Encek(V,R) and πT ← ProveT,crs(C, ek, V,R)

4. store ε(HC) 7→ C and σ(C, ek) 7→ encme(HC)

5. let BS = [encPackage : C, ek, πT , crs], store τ(H) 7→ BS, and return BS

Figure 4.68: Translator T A
true,real – encryption package from honest player

4.5. INTERMEDIATE INTERPRETATION 113

Processing handle H with isEvalPack(H):

• if τ(H) = BS then return BS; otherwise

1. use isEkOfek(H) to determine which encryption key ek to use

2. for i ∈ [2] let Ci = ε(encOfi(H))

3. for i ∈ [2] look inside comOfi(H) to obtain Wi, Si and compute Di ← Comck(Wi, Si)

4. pick fresh randomness R ∈ {0, 1}κ and compute C ← Evale,ek(C1, C2,W1,W2, R)

5. compute πe ← Provee,crs(C,C1, C2, ek,D1, D2, ck,W1, S1,W2, S2, R)

6. let HC = encOf(H), and store ε(HC) 7→ C and σ(C, ek) 7→ evalme(HC)

7. let BS = [evalPackage : C,C1, C2, ek,D1, D2, ek, πe, crs], store τ(H) 7→ BS, and return BS

Figure 4.69: Translator T A
true,real – evaluation package from honest player

Processing of bitstring BS = [comPack : D, ck, πU , crs]:

• if VerU,crs(D, ck, πU) succeeds then:

1. compute (V, ·)← ExtractU,extd(D, ck, πU), let H = commitU,ck,crs
(
V,D

)
, and return H

• otherwise use garbage(·) to create and return a garbage handle

Figure 4.70: Translator T A
true,real – commitment package from corrupt player

Processing of bitstring BS = [encPack : C, ek, πT , crs]:

• if ek ∈ {ekA, ekB}, VerT,crs(C, ek, πT) succeeds, and σ(C, ek) ∈ {⊥, encother(·)} then:

1. compute (V, ·)← ExtractT,extd(C, ek, πT), and let H = encryptT,ek,crs
(
V,C

)
2. let HC = encOf(H), store ε(HC) 7→ C and σ(C, ek) 7→ encother(HC), and return H

• otherwise use garbage(·) to create and return a garbage handle

Figure 4.71: Translator T A
true,real – encryption package from corrupt player

Processing of bitstring BS = [evalPack : C,C1, C2, ek,D1, D2, ck, πe, crs]:

• if ek ∈ {ekA, ekB}, Vere,crs(C, . . . , πe) succ., and σ(C, ek) = evalother(BS,H, ·) then return H

• else if ek ∈ {ekA, ekB}, Vere,crs(C, . . . , πe) succeeds, σ(C, ek) = ⊥, and σ(Ci, ek) ∈
{encother(HCi), evalother(·, ·, HCi), encme(HCi), evalme(HCi)} for both i ∈ [2] then:

1. compute (W1, ·,W2, ·, ·)← Extracte,extd(C,C1, C2, ek,D1, D2, ck, πe) for D1 and D2

2. let H = evale,ek,ck,crs
(
HC1 , HC2 ,W1, D1,W2, D2

)
and HC = encOf(H)

3. store σ(C, ek) 7→ evalother(BS,H,HC) and ε(HC) 7→ C, and return H

• otherwise use garbage(·) to create and return a new garbage handle

Figure 4.72: Translator T A
true,real – evaluation package from corrupt player

114 CHAPTER 4. UNIVERSALLY COMPOSABLE SYMBOLIC ANALYSIS

• Handle H received on crypto channel leakAB,i (ie. from honest A):

– isValue(H): send H on the corresponding channel

– isConstant(H): send H on the corresponding channel

– isPair(H): recursively process first(H) and second(H) to obtain BS1 and BS2; let BS =
[pair : BS1, BS2] and send it on the corresponding channel

– isComPack(H): use the procedure in Figure 4.74 with ck = ckA, crs = crsA, and simtd =
simtdA to obtain BS; send it on the corresponding channel

– isEncPack(H): use the procedure in Figure 4.75 with crs = crsA and simtd = simtdA to obtain
BS; send it on the corresponding channel

– isEvalPack(H): use the procedure in Figure 4.76 with ck = ckA, crs = crsA, and simtd =
simtdA to obtain BS; send it on the corresponding channel

• Handle H received on crypto channel leakBA,j (ie. from honest B):

– isValue(H): send H on the corresponding channel

– isConstant(H): send H on the corresponding channel

– isPair(H): recursively process first(H) and second(H) to obtain BS1 and BS2; let BS =
[pair : BS1, BS2] and send it on the corresponding channel

– isComPack(H): use the procedure in Figure 4.74 with ck = ckB , crs = crsB , and simtd =
simtdB to obtain BS; send it on the corresponding channel

– isEncPack(H): use the procedure in Figure 4.75 with crs = crsB and simtd = simtdB to obtain
BS; send it on the corresponding channel

– isEvalPack(H): use the procedure in Figure 4.76 with ck = ckB , crs = crsB , and simtd =
simtdB to obtain BS; send it on the corresponding channel

• Bitstring BS received on channel inflAB,i or inflBA,j (ie. from the adversary):

– BS = [value : V]: send BS on the corresponding channel

– BS = [constant : Cn]: send BS on the corresponding channel

– BS = [pair : BS1, BS2]: recursively process BS1 and BS2 to obtain H1 and H2; let H = [pair :
H1, H2] and send it on the corresponding channel

– otherwise use garbage(·) to create and return a garbage handle

Figure 4.73: Translator T AB
?

identity just needs to be preserved within each separation33: an encryption package is rejected
(Figure 4.71) unless its encryption C has never been seen before (case σ(C, ek) = ⊥) in which
case identity is trivially preserved, or it has only been seen as part of encryption packages that
also came from the corrupt player (case σ(C, ek) = encother(·)), in which case identity is
preserved since C is again used as the randomness component and the encryption scheme is
correct so that the extracted value V is the same; likewise, an evaluation package is rejected
(Figure 4.72) unless its encryption C has never been seen before (case σ(C, ek) = ⊥), or it has
only been seen as part of the exact same evaluation package (case σ(C, ek) = evalother(·))
in which case identity is preserved since the same handle H is used. Note that σ also ensures
that an evaluation package from the corrupt player can actually be translated by rejecting
evaluations for which we do not already have a translation of the sub-encryptions.

33Our assumptions on the encryption scheme do not rule out the possibility that the environment can extract
both V,R from an honestly generated encryption C if he for instance knows the decryption key. He may then
form a valid encryption package with C′ and send it back to the honest player. In this case C′ = C, yet the
translator will yield a data object HC′ where HC 6= HC′ as the former has R as randomness and the latter C.

4.5. INTERMEDIATE INTERPRETATION 115

Processing of handle H with isComPack(H):

• if τ(H) = BS then return BS; otherwise:

1. let D = δ(comOf(H)); if D = ⊥ then

a) pick randomness R ∈ {0, 1}κ, compute D ← Comck(0, R), and store δ(comOf(H)) 7→ D

2. compute πU ← SimProveU,simtd(D, ck)

3. let BS = [comPackage : D, ck, πU , crs], store τ(H) = BS, and return BS

Figure 4.74: Translator T AB
? – commitment package from honest player

Processing of handle H with isEncPack(H):

• if τ(H) = BS then return BS; otherwise:

1. use isEkOfek(H) to determine which encryption key ek to use

2. let HC = encOf(H) and C = ε(HC); if C = ⊥ then

a) pick randomness R ∈ {0, 1}κ, compute C ← Encek(0, R), and store ε(HC) 7→ C

3. compute πT ← SimProveT,simtd(C, ek)

4. let BS = [encPackage : C, ek, πT , crs], store τ(H) = BS, and return BS

Figure 4.75: Translator T AB
? – encryption package from honest player to honest player

Processing handle H with isEvalPack(H):

• if τ(H) = BS then return BS; otherwise:

1. use isEkOfek(H) to determine which encryption key ek to use

2. for i ∈ [2] let HDi = comOfi(H) and Di = δ(HDi); if Di = ⊥ then

a) pick randomness Ri ∈ {0, 1}κ, compute Di ← Comck(0, R), and update δ(HDi) 7→ D1

3. for i ∈ [2] let Ci = ε(encOfi(H)) and pick fresh randomness R ∈ {0, 1}κ

4. compute C ← Encek(0, R) and πe ← SimProvee,simtd(C,C1, C2, ek,D1, D2, ek, crs)

5. let HC = encOf(H), and store ε(HC) 7→ C and σ(C, ek) 7→ HC
6. let BS = [evalPackage : C,C1, C2, ek,D1, D2, ck, πe, crs], update τ(H) 7→ BS, and return BS

Figure 4.76: Translator T AB
? – evaluation package from honest player to honest player

Let translator T AB
? be given by Figure 4.73 and translator T A

? by Figure 4.77. They are
very similar to their Ttrue,real counterpart but have introduced mapping δ for storing already
processed commitments from honest players, and have extended the use of mapping ε to also
contain already processed encryptions from honest players. Intuitively this is possible since
all proofs are simulated, and means that the translators no longer needs to look into the data
objects in the global memory to obtain the randomness components R. In fact they only use
the methods offered by Oadv to the adversary34.

Lemma 4.5.4. For any well-formed real protocol (SysH)H we have RW(SysH)
c∼ T H?

[
I(SysH)

]
.

Proof. Using the above results we proceed to show the result by a series of hybrid interpretations
progressively changing T Htrue,real into T H? . Indistinguishability of the hybrids follows from the
indistinguishability properties of the underlying cryptographic primitives. Note that through-
out we use that well-formedness ensures that the same randomness is never used twice; this is
important for indistinguishability of the primitives.

34Equality of objects, eq, is needed when the translator looks in its mappings ε, δ, and σ: it would not
be enough for it to simply compare handles as the global memory allows the same object to be created under
different handles.

116 CHAPTER 4. UNIVERSALLY COMPOSABLE SYMBOLIC ANALYSIS

• Handle H received on crypto channel leakAB,i (ie. from honest A):

– isValue(H): send H on the corresponding channel

– isConstant(H): send H on the corresponding channel

– isPair(H): recursively process first(H) and second(H) to obtain BS1 and BS2; let BS =
[pair : BS1, BS2] and send it on the corresponding channel

– isComPack(H): use the procedure in Figure 4.78 with ck = ckA, crs = crsA, and simtd =
simtdA to obtain BS; send it on the corresponding channel

– isEncPack(H) and isEkOfekA(H): use the procedure in Figure 4.79 with ek = ekA, crs = crsA,
and simtd = simtdA to obtain BS; send it on the corresponding channel

– isEncPack(H) and isEkOfekB (H); use the procedure in Figure 4.80 with ek = ekB , crs = crsA,
and simtd = simtdA to obtain BS; send it on the corresponding channel

– isEvalPack(h) and isEkOfekA(H): use the procedure in Figure 4.81 with ek = ekA, ck = ckA,
crs = crsA, and simtd = simtdA to obtain BS; send it on the corresponding channel

– isEvalPack(h) and isEkOfekB (H): use the procedure in Figure 4.82 with ek = ekB , ck = ckA,
crs = crsA, and simtd = simtdA to obtain BS; send it on the corresponding channel

• Bitstring BS received on crypto channel inflBA,j (ie. from corrupt B):

– BS = [value : V]: send BS on the corresponding channel

– BS = [constant : Cn]: send BS on the corresponding channel

– BS = [pair : BS1, BS2]: recursively process BS1 and BS2 to obtain H1 and H2; let H = [pair :
H1, H2] and send it on the corresponding channel

– BS = [comPack : . . .]: use the procedure in Figure 4.83 with ck = ckB , crs = crsB , and
extd = extdB to obtain H; send it on the corresponding channel

– BS = [encPack : . . .]: use the procedure in Figure 4.84 with crs = crsB and extd = extdB to
obtain H; send it on the corresponding channel

– BS = [evalPack : . . .]: use the procedure in Figure 4.85 with ck = ckB , crs = crsB , and
extd = extdB to obtain H; send it on the corresponding channel

– otherwise use garbage(·) to create and return a garbage handle

Figure 4.77: Translator T A
?

Processing of handle H with isComPack(H):

• if τ(H) = BS then return BS; otherwise;

1. let HD = comOf(H) and D = δ(HD); if D = ⊥ then

a) pick randomness R ∈ {0, 1}κ; compute D ← Comck(0, R), and update δ(HD) 7→ D

2. compute πU ← SimU,simtd(D, ck)

3. let BS = [comPackage : D, ck, πU , crs], store τ(H) 7→ BS, and return BS

Figure 4.78: Translator T A
? – commitment package from honest player

Processing of handle H with isEncPack(H):

• if τ(H) = BS then return BS; otherwise

1. let HC = encOf(H) and C = ε(HC); if C = ⊥ then

a) pick R ∈ {0, 1}κ, comp. C ← Encek(0, R), and store ε(HC) 7→ C and σ(C, ek) 7→
encme(HC)

2. compute πT ← SimProveT,simtd(C, ek)

3. let BS = [encPackage : C, ek, πT , crs], store τ(H) 7→ BS, and return BS

Figure 4.79: Translator T A
? – encryption package from honest player under honest key

4.5. INTERMEDIATE INTERPRETATION 117

Processing of handle H with isEncPack(H):

• if τ(H) = BS then return BS; otherwise

1. let HC = encOf(H) and C = ε(HC); if C = ⊥ then

a) let V = decryptdk(HC) and pick fresh randomness R ∈ {0, 1}κ

b) compute C ← Encek(V,R), and store ε(HC) 7→ C and σ(C, ek) 7→ encme(HC)

2. compute πT ← SimProveT,simtd(C, ek)

3. let BS = [encPackage : C, ek, πT , crs], store τ(H) 7→ BS, and return BS

Figure 4.80: Translator T A
? – encryption package from honest player under corrupt key

Processing handle H with isEvalPack(H):

• if τ(H) = BS then return BS; otherwise:

1. for i ∈ [2] let HDi = comOfi(H) and Di = δ(HDi); if Di = ⊥ then

a) pick randomness Ri ∈ {0, 1}κ, compute Di ← Comck(0, R), and update δ(HDi) 7→ D1

2. for i ∈ [2] let Ci = ε(encOfi(H))

3. pick fresh randomness R ∈ {0, 1}κ and let HC = encOf(H)

4. compute C ← Encek(0, R) and πe ← SimProvee,simtd(C,C1, C2, ek,D1, D2, ck)

5. store ε(HC) 7→ C and σ(C, ek) 7→ evalme(HC)

6. let BS = [evalPackage : C,C1, C2, ek,D1, D2, ck, πe, crs], store τ(H) = BS, and return BS

Figure 4.81: Translator T A
? – evaluation package from honest player under honest key

Processing of handle H with isEvalPack(H):

• if τ(H) = BS then return BS; otherwise:

1. for i ∈ [2] let HDi = comOfi(H) and Di = δ(HDi); if Di = ⊥ then

a) pick randomness Ri ∈ {0, 1}κ, compute Di ← Comck(0, R), and update δ(HDi) 7→ D1

2. for i ∈ [2] let Ci = ε(encOfi(H))

3. pick fresh randomness R ∈ {0, 1}κ, and let HC = encOf(H) and V = decryptdk(HC)

4. compute C ← Encek(V,R) and πe ← SimProvee,simtd(C,C1, C2, ek,D1, D2, ck)

5. store ε(HC) 7→ C and σ(C, ek) 7→ evalme(HC)

6. let BS = [evalPackage : C,C1, ek,D1, D2, ck, πe, crs], store τ(H) 7→ BS, return BS

Figure 4.82: Translator T A
? – evaluation package from honest player under corrupt key

Processing of bitstring BS = [comPack : D, ck, πU , crs]:

• if VerU (D, ck, πU , crs) succeeds then:

1. compute (V, ·)← ExtractU,extd(D, ck, πU), let H = commitU,ck,crs
(
V,D

)
, and return H

• otherwise use garbage(·) to create and return a garbage handle

Figure 4.83: Translator T A
? – commitment package from corrupt player

Processing of bitstring BS = [encPack : C, ek, πT , crs]:

• if ek ∈ {ekA, ekB}, VerT,crs(C, ek, πT) succeeds, and σ(C, ek) ∈ {⊥, encother(·)} then:

1. compute (V, ·)← ExtractT,extd(C, ek, πT), and let H = encryptT,ek,crs
(
V,C

)
2. let HC = encOf(H), store ε(HC) 7→ C and σ(C, ek) 7→ encother(HC), and return H

• otherwise use garbage(·) to create and return a garbage handle

Figure 4.84: Translator T A
? – encryption package from corrupt player

118 CHAPTER 4. UNIVERSALLY COMPOSABLE SYMBOLIC ANALYSIS

Processing of bitstring BS = [evalPack : C,C1, C2, ek,D1, D2, ck, πe, crs]:

• if ek ∈ {ekA, ekB}, Vere,crs(C, . . . , πe) succ., and σ(C, ek) = evalother(BS,H, ·) then return H

• else if ek ∈ {ekA, ekB}, Vere,crs(C, . . . , πe) succeeds, σ(C, ek) = ⊥, and σ(Ci, ek) ∈
{encother(HCi), evalother(·, ·, HCi), encme(HCi), evalme(HCi)} for both i ∈ [2] then:

1. compute (W1, ·,W2, ·, ·)← Extracte,extd(C,C1, C2, ek,D1, D2, ck, πe) for D1 and D2

2. let H = evale,ek,ck,crs
(
HC1 , HC2 ,W1, D1,W2, D2

)
and HC = encOf(H)

3. store σ(C, ek) 7→ evalother(BS,H,HC) and ε(HC) 7→ C, and return H

• otherwise use garbage(·) to create and return a new garbage handle

Figure 4.85: Translator T A
? – evaluation package from corrupt player

• Let n be the number of proofs sent by honest players in the execution. In interpreta-
tion T Hsim,i[I(SysH)] for 0 ≤ i ≤ n we use the simulation trapdoors to create the first i
proofs from honest players using SimProve instead of Prove. Indistinguishability between
T Hsim,i[I(SysH)] and T Hsim,i+1[I(SysH)] follows by the NIZK scheme being computational
zero-knowledge on true statements. Since n is polynomial in κ we get indistinguishability
through-out the entire series.

• In interpretation T Hrand[I(SysH)] we ignore the randomness symbols supplied by the honest
players and let the translator chose fresh randomness on its own instead. This is possible
because the protocol is well-formed and all proofs are simulated, yet it requires us to
maintain the mapping δ for commitments and ε for encryptions.

• Let n be the number of commitments sent by honest players in the execution. In interpre-
tations T Hcom,i[I(SysH)] for 0 ≤ i ≤ n we replace the values in the first i commitments from
honest players with constants instead of the actual values. Indistinguishability between
T Hcom,i[I(SysH)] and T Hcom,i+1[I(SysH)] follows by the commitment scheme being compu-
tationally hiding. Since n is polynomial in κ we then get indistinguishability through-out
the entire series.

• Let n be the number of evaluation packages sent by honest players in the execution. In
interpretations T Heval,i[I(SysH)] for 0 ≤ i ≤ n we produce the ciphertext C in the first i
evaluation packages from honest players using Enc instead of using Eval. Indistinguisha-
bility between T Heval,i[I(SysH)] and T Heval,i+1[I(SysH)] follows by the encryption scheme
being history hiding. Since n is polynomial in κ we then get indistinguishability through-
out the entire series.

• Let n be the number of encryptions sent by honest players to honest players in the ex-
ecution. In interpretations T Henc,i[I(SysH)] for 0 ≤ i ≤ n we replace the values in the
first i of these encryptions with constants instead of the actual values; for encryptions for
corrupt player we keep the actual values. Indistinguishability between T Henc,i[I(SysH)] and

T Henc,i+1[I(SysH)] follows by IND-CPA of the encryption scheme. Since n is polynomial in
κ we then get indistinguishability through-out the entire series.

• Finally, in interpretation T Hdec[I(SysH)] the global memory functionality Fmem is moved
outside so that the translator now only has access to it through Oadv. However, at this
point the only situations where T Hdec needs to look inside the memory is to obtain the correct
value for encryptions sent to a corrupt player, and this can be done using the decrypt

method instead.

In summary we get that RW(SysH)
c∼ T Hdec[I(SysH)], and the result follows since T Hdec =

T H? .

4.5. INTERMEDIATE INTERPRETATION 119

To get a similar result for an ideal protocol we start with a hybrid interpretation T Htrue,ideal
similar to T Htrue,real but parameterised by the programmes in the system; this is needed for the
translator to know which simevale operation was used to create each evaluation package (and
in turn whether Eval or Enc was used) as it cannot decide this from the received handles
and interacting with Oadv alone. Since all proofs are already simulated we skip the first step
of going from T Htrue,real to T H? but otherwise apply the remaining sequence of hybrids as in
Lemma 4.5.4.

Lemma 4.5.5. For any well-formed ideal protocol (SysH)H we have RW(SysH)
c∼ T H?

[
I(SysH)

]
.

We can then state the soundness result.

Theorem 4.5.6 (Soundness of Intermediate Interpretation). Let SysH1 and SysH2 be two well-

formed systems. If I(SysH1)
c∼ I(SysH2) then RW(SysH1)

c∼ RW(SysH2).

Proof. By assumption no polynomially bounded ITM Z ′ can tell the difference between I(SysH1)
and I(SysH2) while having access only to Oadv, in particular no Z ′ = Z �T H? for a polynomially
bounded ITM Z. The result then follows by Lemma 4.5.4 and 4.5.5.

Corollary 4.5.7. Let (SysHreal)H be a real protocol φ and let (SysHideal)H be an ideal protocol

with target functionality F . If I(SysHreal)
c∼ I(SysHideal) for all three H ∈ {AB ,A,B} then φ

realises MF (with inlined operation module) under static corruption.

Proof. We first note that by combining from the setup functionality with the MP machines for
simulator(s), authenticated channels, and simulated functionalities, we obtain an syntactically
correct UC-simulator CombSim for MF . We then use the assumption and Theorem 4.5.6.

120 CHAPTER 4. UNIVERSALLY COMPOSABLE SYMBOLIC ANALYSIS

4.6 Symbolic Model and Interpretation

We now give a symbolic model and interpretation tailored to be a conservative approximation
of the intermediate model. We use the dialect in [BAF05] of the applied-pi calculus [AF01]
as the underlying framework since this provides us with an unified way of expressing honest
entities, the powers of the adversary35, and indistinguishability. Moreover, we will later use
that automated verification tools exist for this calculus in the form of ProVerif [Bla04, BAF05].

4.6.1 Symbolic Model

For the symbolic model we assume a modelling Vals of the values in the domain, i.e. for each
integer in the domain in consideration there is a unique abstract term36 ranged over by v.
Likewise we also assume a modelling of all constants in Consts ∪ {true, false,garbage}. Let
N (also called names) be a countable set of atomic symbols used to model randomness r, secret
key material dk, extd, and ports p. A term t is then build from names n in N , a countable set
of variables x, y, z, . . . , and the constructor symbols in Figure 4.86. The proof (·) constructors
are unavailable to the adversary.

pair for pairings

ek, crs for keys

com, enc for commitments and encryptions

proofU , comPack for commitment packages

proofT , encPack for encryption packages

proofe, evalPack for evaluation packages

Figure 4.86: Term constructor symbols

The destructor symbols are given in Figure 4.87, and we also use t to range over terms
with destructors. Only the evale destructor is unavailable to the adversary. The reason for
this is that in order to keep the symbolic model suitable for automated analysis, we do not
wish to symbolically model the composition of randomness from encryptions when performing
homomorphic evaluations. On the other hand, the evaluated encryption cannot use randomness
supplied by the adversary nor the randomness of only one of the input encryptions, as both
cases would allow the adversary to easily guess the plaintext. Our solution is then to use fresh
unknown randomness. However, we cannot express this directly in the equational theories
suitable for ProVerif37; instead the private evale destructor takes a randomness r as input and
we give the adversary access to it only through an oracle process (more below).

Processes Q are built from the grammar described in Figure 4.88, where t is a term, u is
a name or port, p is a port, and x is a variable. The nil process does nothing and represents
a halted state. The new u;Q process is used for name and port restriction. Intuitively, the
let x = t in Q else Q′ process tries to evaluate t to t′ by reducing it using the equational theory
and the rewrite rules (over which the calculus is parameterised); if it is successful it binds it to
x in Q and proceeds as this process; if it fails (because there is no matching rewrite rule for

35As usual, these are given by his deductive powers (ie. his ability to form new messages from old ones) and
his testing powers (ie. his ability to distinguish messages). The private function symbols allowed by this dialect
of the calculus allows us to better express the adversary’s exact powers.

36One may for instance obtain such a model by having an atomic term for each value. Alternatively one
could have constructors used to represent numbers in unary or binary.

37And if we could, we couldn’t reveal it to the adversary either, as this would allow him to deduce too much,
in turn making it difficult for him to prove that he correctly formed an evaluation package.

4.6. SYMBOLIC MODEL AND INTERPRETATION 121

isComPack,verComPackU for commitments

isEncPack,verEncPackT for encryptions

evale, isEvalPack,verEvalPacke for evaluations

dec, extractCom, extractEnc for decryption

extractEval1, extractEval2 and extraction

ckOf , ekOf , crsOf ,

comOf , comOf1, comOf2, for packages

encOf , encOf1, encOf2

isValue, eqValue, inTypeU , inTypeT for values

isConst, eqConstc for constants

isPair,first, second for pairings

equals for identity checking

Figure 4.87: Term destructor symbols

nil

new u; Q

in[p, x]; Q

out[p, t]; Q

let x = t in Q else Q′

if t = t′ then Q else Q′
Q || Q′

!Q

Figure 4.88: Process syntax

a destructor) then it proceeds as Q′ instead. When Q′ is clear from the context we shall also
write let x = t; Q. The if t = t′ then Q else Q′ process is just syntactic sugar38 but intuitively
proceeds as Q if t and t′ can be rewritten to terms equivalent according to the equtional theory,
and as Q′ if not. Again we will at times omit the “else Q′” part when Q′ is clear from the
context. Finally, Q || Q′ denotes parallel composition, and !Q unbounded replication.

Let an evaluation context E be a process with a hole, built from [], E || Q, Q || E and
new n; E . We obtain E [Q] as the result of filling the hole in E with Q. We say that a process
Q is closed if all its variables are bound through an input or a let construction. We may now
capture the operational semantics of processes by two relations, namely structural equivalence
and reduction. Structural equivalence, denoted by ≡, is the smallest equivalence relation on
processes that is closed under application of evaluation contexts and standard rules such as
associativity and commutativity of the parallel operator (see [AF01, BAF05] for details). Re-
duction, denoted by −→, is the smallest relation closed under structural equivalence, application
of evaluation contexts, and rules:

!Q −→ Q || !Q
out[p, t];Q1 || in[p, x];Q2 −→ Q1 || Q2{t/x}

let x = t in Q else Q′ −→

{
Q{t′/x} when t ⇓ t′ for some t′

Q′ otherwise

where t ⇓ t′ indicates that t may be rewritten to t′ containing no destructors using the rewrite
rules and the equational theory. Our rewrite rules are given in Figure 4.89 and we only need a

38Namely, if t = t′ then Q else Q′ is defined as usual as let x = equals(t, t′) in Q else Q′ for x free in Q.

122 CHAPTER 4. UNIVERSALLY COMPOSABLE SYMBOLIC ANALYSIS

trivial equational theory39. We write −→∗ for the reflexive and transitive closure of reduction.
Our equivalence notion for formalising symbolic indistinguishability is observational equiv-

alence as defined in [AF01]. Here we write Q↓p when Q can send an observable message on
port p; that is, when Q −→∗ E [out[p, t];Q′] for some term t, some process Q′, and some evaluation
context E that does not bind p.

Definition 4.6.1 (Symbolic indistinguishability). Symbolic indistinguishability, denoted
s∼, is

the largest symmetric relation R on closed processes Q1 and Q2 such that Q1 R Q2 implies:

1. if Q1↓p then Q2↓p
2. if Q1 → Q′1 then there exists Q′2 such that Q2 →∗ Q′2 and Q′1 R Q′2

3. E [Q1] R E [Q2] for all evaluation contexts E

Intuitively, a context may represent an attacker, and two processes are symbolic indistin-
guishable if they cannot be distinguished by any attacker at any step: every output step in an
execution of process Q1 must have an indistinguishable equivalent output step in the execution
of process Q2, and vice versa; if not then there exists a context that “breaks” the equivalence.

Note however that the definition uses an existential quantification: if Q1
s∼ Q2 then we only

know that a reduction of Q1 can be matched by some reduction by Q2. Since we allow private
connections in our protocols this has implication for the soundness result in Section 4.6.5 as
symbolic indistinguishability only guarantees that some scheduling of two systems make them
indistinguishable; for soundness we need that this holds for the (token-based) scheduling used
in the computational model.

4.6.2 Programme Interpretation

Using the model from above we may now give a symbolic interpretation of a programme P in
the form of a process QP with private access to an implementation of the operations available
to it40. Invocation of one of these operations is done by sending a message on a dedicated
port, say pcallcommit, and receiving the result back on a corresponding pretcommit. Boolean operations
such as isEncPack always return either true or false, and non-boolean operations return a
term unless they abort (say, a check fails) in which case no message is sent back causing QP
to block. Abusing the notation slightly we shall often write invocations inlined, ie. let y =
encryptT,ek,crs(v, r);Q instead of out[pcallencrypt...,pair(v, r)]; in[pretencrypt..., y];Q.

Unlike the other models, the symbolic implementation of the operation modules does not
include storing methods. Since the checks performed by these are still required by soundness,
we assume that the programme itself contains enough instructions such that whenever a mes-
sage is received, the programmes rejects it if the intermediate interpretation would have done
so, as determined by methods acceptPlain and acceptCrypto. This is easily satisfied for
protocols where all messages have a predefined structure, and we have chosen so for simplicity,
in particular to avoid encoding the recursive checking of pairings and the σ list of previously
received encryptions; avoiding these encodings is desirable from an automated verification point
of view.

We introduce a bit of syntactic sugar before giving the interpretation. Let Qp1 , . . . , Qpn be
processes. We then use the standard trick of writing

in[p1, x1];Qp1 + in[p2, x2];Qp2 + · · ·+ in[pn, xn];Qpn

39The ProVerif manual [Bla11] advocates the use of rewrite rules over equations for efficiency reasons.
40As for the computational models this strong separation between the programme and its module is artificial,

and in practise the module is simply inlined in the process.

4.6. SYMBOLIC MODEL AND INTERPRETATION 123

isValue(v) ; true for all v ∈ Dom

eqValue(v, v) ; true for all v ∈ Dom

inTypeU (v) ; true for all v ∈ U
inTypeT (v) ; true for all v ∈ T

isPair(pair(x1, x2)) ; true

first(pair(x1, x2)) ; x1

second(pair(x1, x2)) ; x2

eqConstc(c) ; true for all c ∈ Const

isConst(c) ; true for all c ∈ Const

pevalf (v1, v2, v3, v4) ; v for all vi ∈ Dom and v = f(v1, v2, v3, v4)

isComPack(comPack(xd, xck, xπ, xcrs)) ; true

verComPackU (comPack(xd, xck,proofU (xd, xck, xcrs), xcrs)) ; true

isEncPack(encPack(xc, xek, xπ, xcrs)) ; true

verEncPackT (encPack(xc, xek,proofT (xc, xek, xcrs), xcrs)) ; true

isEvalPack(evalPack(xc, xc1 , xc2 , xek, xd1 , xd2 , xck, xπ, xcrs)) ; true

verEvalPacke(evalPack(xc, xc1 , . . . , xck,proofe(xc, xc1 , . . . , xcrs), xcrs)) ; true

evale(enc(v1, xr1 , ek(xdk)), enc(v2, xr2 , ek(xdk)), v3, v4, xr) ; enc(v, xr, ek(dk))

for all vi ∈ Dom and v = pevale(v1, v2, v3, v4)

dec(enc(v, xr, ek(xdk)), xdk) ; v

extractCom(proofU (com(v, xr, xck), xck, crs(xextd)), xextd) ; v

extractEnc(proofT (enc(v, xr, xek), xek, crs(xextd)), xextd) ; v

extractEvali(proofe(. . . , com(v1, xr1 , xck), com(v2, xr2 , xck), . . . , crs(xextd)), xextd) ; vi for i ∈ {1, 2}

comOf(comPack(xd, xck, xπ, xcrs)) ; xd

ckOf(comPack(xd, xck, xπ, xcrs)) ; xck

proofOf(comPack(xd, xck, xπ, xcrs)) ; xπ

crsOf(comPack(xd, xck, xπ, xcrs)) ; xcrs

encOf(encPack(xc, xek, xπ, xcrs)) ; xc

ekOf(encPack(xc, xek, xπ, xcrs)) ; xek

proofOf(encPack(xc, xek, xπ, xcrs)) ; xπ

crsOf(encPack(xc, xek, xπ, xcrs)) ; xcrs

encOf(evalPack(xc, xc1 , xc2 , xek, xd1 , xd2 , xck, xπ, xcrs)) ; xc

encOf i(evalPack(xc, xc1 , xc2 , xek, xd1 , xd2 , xck, xπ, xcrs)) ; xci for i ∈ {1, 2}
ekOf(evalPack(xc, xc1 , xc2 , xek, xd1 , xd2 , xck, xπ, xcrs)) ; xek

comOf i(evalPack(xc, xc1 , xc2 , xek, xd1 , xd2 , xck, xπ, xcrs)) ; xdi for i ∈ {1, 2}
ckOf(evalPack(xc, xc1 , xc2 , xek, xd1 , xd2 , xck, xπ, xcrs)) ; xck

proofOf(evalPack(xc, xc1 , xc2 , xek, xd1 , xd2 , xck, xπ, xcrs)) ; xπ

crsOf(evalPack(xc, xc1 , xc2 , xek, xd1 , xd2 , xck, xπ, xcrs)) ; xcrs

equals(x, x) ; true

Figure 4.89: Term rewrite rules

124 CHAPTER 4. UNIVERSALLY COMPOSABLE SYMBOLIC ANALYSIS

instead of

new p;


out[p, token]; nil

|| in[p, x]; in[p1, x1];Qp1

|| in[p, x]; in[p2, x2];Qp2

|| . . .
|| in[p, x]; in[pn, xn];Qpn


for a process

∑
i in[pi, xi];Qpi listening on several ports at once but prevented from responding

to more than one of them (p and x are free in all Qpi). Informally, only one of the processes
may receive token and hence continue.

To give an interpretation of a programme we start by interpreting the leaves as nil processes.
We then iteratively work our way backwards through the edges: consider a programme point Σ
with n outgoing edges pointing to Σ1, . . . ,Σn that have already been interpreted as processes
Q1, . . . , Qn. We now partition these edges by the port they are listening on. For each partition
pi we may then interpret (sub-)programme Ppi from Σ by an input statement followed by
an series of if-then-else processes encoding the conditions, a series of let processes encoding
the commands sequence, and ending in an optional output statement. This gives processes
in[pi, xi];Qpi that may then finally be combined to obtain Q =

∑
i in[pi, xi];Qpi

As an example consider a node Σ with two input-output edges (to Σ1 and Σ2) and one
input-only edge (to Σ3) that all listen on the same port pin, and with respective conditions

ψ1 = isEncPack(xin) ∧ verEncPackT,ek,crs(xin)

ψ2 = isEvalPack(xin) ∧ verEvalPacke,ek,ck,crs(xin)

ψ3 = ¬ψ1 ∨ ¬ψ2

and respective command sequences{
decryptdk(xin)

y

} {
decryptdk(xin)

y

}
∅

which is well-formed since isEncPack(x) implies ¬isEvalPack(x), and vice versa. For the sym-
bolical interpretation we obtain the sequential process Q in Figure 4.90.

4.6.3 Symbolic Implementation of Operation Modules

To form a symbolic operation module for an honest entity we first give a process Qop for each
available operation op. We have omitted the simpler operations and only give these processes for
commitment, encryption, and evaluation operations in Figure 4.91, 4.92, and 4.93 respectively,
where we have also omitted some “else” branches. Note that they follow the intermediate
implementation in Section 4.5.2 closely. For a process QP for programme P with access to
operations op1, . . . , opn we may then form its operation process QboxP

as

QboxP

.
= !Qop1 || · · · || !Qopn

which we note may be parameterised by keys if P is cryptographic. Since this process is private
to QP we will have to link them through a series of port restrictions along the lines of

new pcallop1 ; new pretop1 ; . . . ; new pcallopn ; new pretopn ;
(
QP || QboxP

)
such that only QP may interact with QboxP

.
As for the operations offered to the adversary (see Section 4.5.3) we first note that his

operations may all be modelled as above. However, it is also sound to give the symbolic

4.6. SYMBOLIC MODEL AND INTERPRETATION 125

Q
.
= in[pin, xin];

if isEncPack(xin) = true then

if verEncPackT,ek,crs(xin) = true then

let y = decryptdk(xin);

out[p1, x1];Q1

else Q3

else if isEvalPack(xin) = true then

if verEvalPacke,ek,ck,crs(xin) = true then

let y = decryptdk(xin);

out[p2, x2];Q2

else Q3

else Q3

Figure 4.90: Example symbolic interpretation of programme point Σ

QverComPackU,ck,crs

.
= in[pcallverComPackU,ck,crs

, xd];

if verComPackU (xd) = true then

if ckOf(xd) = ck then

if crsOf(xd) = crs then

out[pretverComPackU,ck,crs
, true]

QcommitU,ck,crs

.
= in[pcallcommitU,ck,crs

, (xv, xr)];

if inTypeU (xv) = true then

let xd = com(xv, xr, ck);

let xπ = proofU (xd, ck, crs);

out[pretcommitU,ck,crs
, comPack(xd, ck, xπ, crs)]

QsimcommitU,ck,simtd

.
= in[pcallsimcommitU,ck,simtd

, (xv, xr)];

if isValue(xv) = true then

let xd = com(xv, xr, ck);

let xπ = proofU (xd, ck, crs);

out[pretsimcommitU,ck,crs
, comPack(xd, ck, xπ, crs)]

Figure 4.91: Symbolic implementation of operations for commitment packages

126 CHAPTER 4. UNIVERSALLY COMPOSABLE SYMBOLIC ANALYSIS

QverEncPackT,ek,crs

.
= in[pcallverEncPackT,ek,crs

, xc];

if verEncPackT (xc) = true then

if ekOf(xc) = ek then

if crsOf(xc) = crs then

out[pretverEncPackT,ek,crs
, true]

QencryptT,ek,crs

.
= in[pcallencryptT,ek,crs

, (xv, xr)];

if inTypeT (xv) = true then

let xc = enc(xv, xr, ek);

let xπ = proofT (xc, ek, crs);

out[pretencryptT,ek,crs
, encPack(xc, ek, xπ, crs)]

QsimencryptT,ek,simtd

.
= in[pcallsimencryptT,ek,crs

, (xv, xr)];

if isValue(xv) = true then

let xc = enc(xv, xr, ek);

let xπ = proofT (xc, ek, crs);

out[pretsimencryptT,ek,crs
, encPack(xc, ek, xπ, crs)]

Figure 4.92: Symbolic implementation of operations for encryption packages

adversary more powers than the intermediate adversary, yet it may simplify the analysis. He
may use any constructor and destructor as he pleases, except for evale, proveU , proveT and
provee which we have to grant him explicit access to. To do this we give him access to process
Qadvbox defined as follows41

Qadvbox
.
= !QadvcommitU || !Q

adv
encryptT

|| !Qadvevale

using the processes in Figure 4.95.

4.6.4 Symbolic Interpretation

Given a system Sys in corruption scenario H we may use the encoding of programmes from
above to form a composed process QHhonest of all programmes in Sys along with their operation
modules. By combining this with a process QHadv containing Qadvbox as well as a process leaking
the public and corrupted decryption keys, we obtain our symbolic interpretation:

Definition 4.6.2 (Symbolic Interpretation). The symbolic interpretation S(Sys) of a well-
formed system Sys is given by process EHsetup

[
QHhonest || QHadv

]
where the setup contexts EHsetup

are given in Figure 4.96.

4.6.5 Soundness of Symbolic Interpretation

Since the symbolic model already matches the intermediate model quite closely, the main issue
for the soundness theorem is to ensure that the two notions of equivalence coincide. This in

41Note that there is no need to give different boxes in the different corruption scenarios.

4.6. SYMBOLIC MODEL AND INTERPRETATION 127

QverEvalPacke,ek,ck,crs

.
= in[pcallverEvalPacke,ek,ck,crs

, (xc, xc1 , xc2 , xd1 , xd2)];

if verEvalPacke(xc) = true then

if encOf i(xc) = encOf(ci) then

if comOf i(xc) = comOf(di) then

if ekOf(xc) = ek then

if ckOf(xc) = ck then

if crsOf(xc) = crs then

out[pretverEvalPacke,ek,ck,crs
, true]

Qevale,ek,ck,crs

.
= in[pcallevale,ek,ck,crs

, (xc1 , xc2 , xv1 , xr1 , xv2 , xr2)];

if ekOf(xci) = ek then

if isValue(xvi) = true then

let xc′i = encOf(xci);

let xd′i = com(xvi , xri , ck);

new r;

let xc′ = evale(xc′1 , xc′2 , xv1 , xv2 , r);

let xπ = proofe(xc′ , xc′1 , xc′2 , ek, xd′1 , xd′2 , ck, crs);

let xc = evalPack(xc′ , xc′1 , xc′2 , ek, xd′1 , xd′2 , ck, xπ, crs);

out[pretevale,ek,ck,crs
, xc]

Qsimevale,ek,ck,simtd

.
= in[pcallevale,ek,ck,crs

, (xv, xc1 , xc2 , xd1 , xd2)];

if ekOf(xci) = ek then

if ckOf(xdi) = ck then

let xc′i = encOf(xci);

let xd′i = comOf(xdi);

new r;

let xc′ = enc(xv, r, ek);

let xπ = proofe(xc′ , xc′1 , xc′2 , ek, xd′1 , xd′2 , ck, crs);

let xc = evalPack(xc′ , xc′1 , xc′2 , ek, xd′1 , xd′2 , ck, xπ, crs);

out[pretevale,ek,ck,crs
, xc]

Figure 4.93: Symbolic implementation of operations for evaluation packages

128 CHAPTER 4. UNIVERSALLY COMPOSABLE SYMBOLIC ANALYSIS

Qdecryptdk

.
= in[pcalldecryptdk

, xc];

if ekOf(xc) = ek then

let xc′ = encOf(xc);

let xv = dec(xc′ , dk);

out[pretdecryptdk
, xv]

QextractComextd

.
= in[pcallextractComcrs

, xd];

if isComPack(xd) = true then

if crsOf(xd) = crs then

let xπ = proofOf(xd);

let xv = extractCom(xπ, extd);

out[pretextractComcrs
, xv]

QextractEncextd

.
= in[pcallextractEnccrs , xc];

if isEncPack(xc) = true then

if crsOf(xc) = crs then

let xπ = proofOf(xc);

let xv = extractEnc(xπ, extd);

out[pretextractEnccrs , xv]

QextractEval1,extd

.
= in[pcallextractEval1,crs , xc];

if isEvalPack(xc) = true then

if crsOf(xc) = crs then

let xπ = proofOf(xc);

let xv = extractEval1(xπ, extd);

out[pretextractEval1,crs , xv]

QextractEval2,extd

.
= in[pcallextractEval2,crs , xc];

if isEvalPack(xc) = true then

if crsOf(xc) = crs then

let xπ = proofOf(xc);

let xv = extractEval2(xπ, extd);

out[pretextractEval2,crs , xv]

Figure 4.94: Symbolic implementation of operations for decryption and extraction

4.6. SYMBOLIC MODEL AND INTERPRETATION 129

QadvcommitU

.
= in[padvcallcommitU , (xv, xr, xck, xcrs)];

if inTypeU (xv) = true then

let xd = com(xv, xr, xck);

let xπ = proofU (xd, xck, xcrs);

out[padvretcommitU , comPack(xd, xck, xπ, xcrs)]

QadvencryptT

.
= in[padvcallencryptT

, (xv, xr, xek, xcrs)];

if inTypeT (xv) = true then

let xc = encrypt(xv, xr, xek);

let xπ = proofT (xc, xek, xcrs);

out[padvretencryptT
, encPack(xc, xek, xπ, xcrs)]

Qadvevale

.
= in[padvcallevale , (xc1 , xc2 , xv1 , xr1 , xv2 , xr2 , xek, xck, xcrs)];

new r;

let xc = evale(xc1 , xc2 , xv1 , xv2 , r);

let xd1 = com(xv1 , xr1 , xck);

let xd2 = com(xv2 , xr2 , xck);

let xπ = proofe(xc, xc1 , xc2 , xek, xd1 , xd2 , xck, xcrs);

out[padvretevale , evalPack(xc, xc1 , xc2 , xek, xd1 , xd2 , xck, xπ, xcrs)]

Figure 4.95: Symbolic implementation of operations for adversary’s operations

EABsetup
.
= new ckA, ckB ;

new dkA, dkB ;

let ekA = ek(dkA);

let ekB = ek(dkB);

new crsA, crsB ;

[]

EAsetup
.
= new ckA, ckB ;

new dkA, dkB ;

let ekA = ek(dkA);

let ekB = ek(dkB);

new crsA, extdB ;

let crsB = crs(extdB);

[]

EBsetup
.
= new ckA, ckB ;

new dkA, dkB ;

let ekA = ek(dkA);

let ekB = ek(dkB);

new extdA, crsB ;

let crsA = crs(extdA);

[]

Figure 4.96: Setup evaluation contexts

130 CHAPTER 4. UNIVERSALLY COMPOSABLE SYMBOLIC ANALYSIS

turn essentially boils down to ensuring that the scheduling that leads to symbolic equivalence
coincides with the scheduling policy used in the computational interpretations42.

Our solution is to restrict systems such that they allow only one choice of symbolic schedul-
ing, namely that of the computational model. In particular, we have as an invariant that if a
system is activated with an input then there is only one execution path to either an output
or a deadlock state43. Initially this invariant holds because of the protocol model. To ensure
that it is preserved during execution it is enough to require that no message is lost, ie. for
any strategy of the adversary, if a programme sends a message on a port then the receiving
programme is at a programme point where it is listening on that port. The motivation behind
this choice is that the two models disagree on what happens when the receiver is not ready:
in the computational model the message is lost (read but ignored by the receiver) while in the
symbolic model the message hangs around (possibly blocking) until the receiver is ready; this
may then lead to non-determinism and several scheduling choices.

Theorem 4.6.3. Let Sys1 and Sys2 be two well-formed systems that do not allow messages
to be lost. If S(Sys1)

s∼ S(Sys2) then I(Sys1)
c∼ I(Sys2).

Proof. Let Qi = S(Sysi) and let Z be any polynomial time environment44 interacting with
either N1 = I(Sys1) or N2 = I(Sys2). If we can show that for all fixed choices of random
tape for Z there is only a negligible probability (over the random tapes of the honest machines)
of distinguishing N1 from N2 then this implies that they are also indistinguishable when the
random tape of Z is drawn from a distribution instead.

Now assume that the random tape of Z has been fixed so its first activation becomes
deterministic. If its action is an output guess g ∈ {0, 1} then we are done since it would clearly
do the same in both cases. Else, if it is an activation of an honest machine in Ni (ie. an
invocation of its operation module or sending a message to a programme machine) then we
need to argue that when Z is re-activated it only has negligible probability of distinguishing.
To do this we first show that there exists an evaluation context E0 that when applied to Qi with
overwhelming probability will match the reaction of Ni. Since Q1

s∼ Q2 implies E0[Q1]
s∼ E0[Q2]

this will then allow us to make conclusions about the reaction of N1 and N2.
More concretely, by inspecting the bitstring sent by Z we may use the mappings on values

and constants to show the existence of an evaluation context E0 that extensionally behaves
the same: name restriction is used for the randomness sent to its operation module, garbage
for the handles (since this is the first activation and hence nothing has been received from the
honest machines yet, any handle from the adversary must be a guess that we assume is going to
fail), and pair for constructing pairings. For each randomness sent we also record its associated
name by ρ(R) 7→ r. Below we then show that with overwhelming probability the activation of
a machine in Ni ends with a message M0

i being sent back to Z if and only if E0[Qi] evaluates
to an output of term t0i on an open port; moreover, M0

i and t0i have the same structure. Then,

since E0[Q1]
s∼ E0[Q2] as mentioned above we must have that t01 is output if and only if t02 is, and

by the operations available to the symbolic adversary they must also have the same structure
(otherwise the operations could be used to distinguish the two terms). But this in turn means

42This issue arises as a combined consequence of the existential quantification in observation equivalence and
the use of private ports. Concretely, we may construct two systems which are indistinguishable in the symbolic
mode but trivially distinguishable in the computational model because of the different scheduling policy.

43Note that the symbolic adversary may choose to activate a system with more than one input at a time
because of the inherited concurrency of the symbolic model. This is not a problem since we only want to show
soundness in one direction.

44The UC framework gives a precisely notion of polynomial time (in the security parameter κ) for ITMs.
What we require here is that the messages send by the environment contain at most polynomially many random
bitstrings, and that it only invokes its operation module and the honest programme machines a polynomial
number of times; we put no restrictions on the amount of computation that goes into producing the messages.

4.6. SYMBOLIC MODEL AND INTERPRETATION 131

that with overwhelming probability the only difference between M0
1 and M0

2 is their random
bitstrings; and since the operation modules always refresh these during retrieve, the two have
the same distribution from the point of view of Z. But this means that with overwhelming
probability, when Z is re-activated it is done so by a message that is distributed the same in
the two cases and hence it cannot distinguish.

To continue the argument for the second activation we use the same approach as before,
and show that for all choices of random bitstrings in the message it may only distinguish with
negligible probability. Concretely, let M0 be any message from the distribution of M0

1 and
M0

2 , and consider the (now deterministic) activation of Z on this message. Again, if its action
is an output guess then we are done. Otherwise, if it is an activation of an honest machine
then we show by construction there exists an evaluation context that extensionally behaves
the same. Unlike what we did before we first need to decompose M0 in order to correctly
interpret the action: having chosen a fresh variable name x0, we then store in η each handle
encountered in M0 together with a term of first and second describing its path relative to
x0, ie. if M0 = 〈pair : H1, H2〉 then η(H1) 7→ first(x0) and η(H2) 7→ second(x0) afterwards.
Similar to before, we may then construct context E1 that first behaves as E0, next inputs for x0,
then use name restriction for new randomness, and finally build its output in accordance with
the bitstring sent by Z and the recordings in ρ and η. Again we apply that with overwhelming
probability the first activation of Ni by Z will be matched by E1[Qi], and the same argument
can now be applied to show that the second activation will also be matched with overwhelming
probability. Furthermore, E1[Q1]

s∼ E1[Q2].
We may continue this approach for the entire execution and by our assumption that there

are at most polynomially many activations we obtain the desired result.
Finally, we need to argue that there is only a negligible probability of a mismatch between Ni

and Qi for each activation. Since we have assumed that no message is lost we know that a priori
the two interpretations agree on the sequence of programmes activated as no non-determinism
arises45 in the symbolic execution. This means that the only point where the sequences may
diverge is if a clash between the randomly chosen bitstrings of length κ occurs, either because an
honest machine chose the same by coincidence or because the environment managed to “guess”
one46. However, since each activation of Ni compares and generates at most polynomially
many of these, the probability that a clash occurs is negligible; note that here we need that the
bitstrings sent by Z may only contain polynomially many random bitstrings.

45We of course also use the conditions are mutually exclusive and that each port only has one receiver. This
means that the only point where non-determinism may occur is if an activation allowed a “stuck” output process
to finally react with an input process in the symbolic interpretation; but by the assumption that the systems
do not allow messages to be lost no output process can get stuck in the first place.

46A clash cannot happen in the symbolic model, not least because the adversary is incapable of such guessing.
Concretely, there does not exist an evaluation context matching a successful guess (an unsuccessful guess is
interpreted as either a fresh name or garbage depending on type).

132 CHAPTER 4. UNIVERSALLY COMPOSABLE SYMBOLIC ANALYSIS

4.7 Analysis of OT Protocol in ProVerif

In this section we illustrate how the ProVerif tool may be used in proving the OT protocol of
[DNO08] secure. After fixing the domain we massage the processes from the symbolic inter-
pretation to fit with ProVerif; to keep with the idea of automated analysis this step is done in
a somewhat systematic way, although no algorithm is given. We then successfully verify the
protocol with ProVerif, and as a sanity check show that the tool correctly discovers expected
attacks on intentionally flawed versions of the protocol.

4.7.1 Instantiating The Model

We fix the domain to {0, 1, 2} and use atomic symbols zero, one, and two to encode these
values; this allows us to hardcode the arithmetic of pevalf and in turn also evale. The types
are dom = {zero,one, two} and bit = {zero,one}, and by inspecting the protocol we see that
we need constants {getInput,bReceived,xsReceived,finish,deliver} besides the default
{true, false,garbage}.

From the symbolic interpretation we obtain (inlined) processes for each of the programmes
in the two protocols. As an example the processes QS , QR for the two players programmes are
shown in Figure 4.97, and the processes for the ideal functionality and simulators when both
players honest are shown in Figure 4.98. The process for an authenticated channel is simply

QAuthAB

.
= in[sendAB , x]; out[leakAB , x]; in[inflAB ,deliver]; out[receiveAB , x]; nil

taking a single input, leaking it, and delivering it when told to by the environment.

QS
.
= new r, r0, r1;

in[receiveRS , cb];

if verEncPackbit(cb) = true then

if ekOf(cb) = ekR then

if crsOf(cb) = crsR then

out[outSOT ,getInput];

in[inS
OT , x01];

if isPair(x01) = true then

let x0 = first(x01);

let x1 = second(x01);

if isValue(x0) = true then

if isValue(x1) = true then

let c′b = encOf(cb);

let c′x = evalsel(c
′
b, x0, x1, r);

let d0 = com(x0, r0, ckS);

let d1 = com(x1, r1, ckS);

let px = proof sel(c
′
x, c
′
b, ekR, d0, d1, ckS , crsS);

let cx = evalPack(c′x, c
′
b, . . . , ckS , px, crsS);

out[sendSR, cx]

QR
.
= new rb;

in[inR
OT , b];

if inTypebit(b) = true then

let c′b = enc(b, rb, ekR);

let pb = proof bit(c
′
b, ekR, crsR);

let cb = encPack(c′b, ekR, pb, crsR);

out[sendRS , cb];

in[receiveSR, cx];

if verEvalPacksel(cx) = true then

if encOf1(cx) = cb then

if ekOf(cx) = ekR then

if crsOf(cb) = crsR then

let xb = dec(encOf(cx), dkR);

out[outROT , xb]

Figure 4.97: Process QS for sender (left) and process QR for receiver (right)

4.7. ANALYSIS OF OT PROTOCOL IN PROVERIF 133

QFSR
OT

.
= in[inROT , b];

if inTypebit(b) = true then

out[leakROT ,bReceived];

in[inflSOT ,getInput];

out[outSOT ,getInput];

in[inSOT , x01];

if isPair(x01) = true then

let x0 = first(x01);

let x1 = second(x01);

if isValue(x0) = true then

if isValue(x1) = true then

out[leakSOT ,xsReceived];

in[inflROT ,finish];

if eqValue(b, zero) = true then

out[outROT , x0]

else

out[outROT , x1]

Q
Sim

SR,S
OT

.
= new r, r0, r1;

in[receiveRS , cb];

if verEncPackbit(cb) = true then

if ekOf(cb) = ekR then

if crsOf(cb) = crsR then

out[inflSOT ,getInput];

in[leakSOT ,xsReceived];

let c′b = encOf(cb);

let c′x = evale(c
′
b, zero, zero, r);

let d0 = com(zero, r0, ckS);

let d1 = com(zero, r1, ckS);

let px = proofsel(c
′
x, c
′
b, . . . , crsS);

let c′x = evalPacksel(c
′
x, c
′
b, . . . , px, crsS);

out[sendSR, c
′
x]

Q
Sim

SR,R
OT

.
= new rb;

in[leakROT ,bReceived];

let c′b = enc(zero, rb, ekR);

let pb = proof bit(c
′
b, ekR, crsR);

let cb = encPack(c′b, ekR, pb, crsR);

out[sendRS , cb];

in[receiveSR, cx];

if verEvalPacksel(cx) = true then

if encOf1(cx) = c′b then

if ekOf(cx) = ekR then

if ckOf(cx) = ckS then

if crsOf(cx) = crsS then

out[inflROT ,finish]

Figure 4.98: Process for ideal functionality FSR
OT (left) and simulators SimSR,S

OT (right, top)

and SimSR,R
OT (right, bottom) for when both players are honest

134 CHAPTER 4. UNIVERSALLY COMPOSABLE SYMBOLIC ANALYSIS

4.7.2 Massaging Processes for ProVerif

Recall that we want to check the following three equivalences:

ESR
[
QS || QAuthSR

|| QAuthRS
|| QR

] s∼ ESR
[
QFSR || QSimSR,S || QAuthSR

|| QAuthRS
|| QSimSR,R

]
ES
[
QS
] s∼ ES

[
QFS || QSimS

]
ER
[
QR
] s∼ ER

[
QFR || QSimR

]
where the evaluation contexts ESR, ES , and ER take care of setting up keys, restricting ports,
and giving leakage and Qabox to the adversary. However, we need to massage the processes
before feeding them to ProVerif. More precisely, the tool does not check symbolic equivalence
directly but instead checks a strictly stronger diff equivalence that requires the two processes
Q1, Q2 in question to be given by a single biprocess B that may be projected to give respectively
Q1 = left(B) and Q2 = right(B). To specify a biprocess we add a term construction

choice[tleft · tright]

that intuitively collapses to tleft in left(B), and tright in right(B). Note that this implies that
processes Q1, Q2 must have the same structure and only differ on terms. ProVerif will then
check if these two are diff equivalent (see [BAF05] for details).

Consider first the case where both players are honest. The following procedure47 first gets
rid of the obvious structural differences by merging the processes on each side of the equation
into as few new processes as possible. In the case of the OT protocol it turns out that a
single process is enough on both sides since both protocols are “sequential” in the sense that
whenever the protocol expects an input from the environment there is only one open input port
as explained next. In the case of the real protocol the processes are initially

in[receiveRS , cb];Q0

∣∣∣∣ in[sendSR, x];Q1

∣∣∣∣ in[sendRS , x];Q2

∣∣∣∣ in[inROT , b];Q3

for some processes Qi and where the only open input port is inROT . An input on inROT will then
result in an output on open port leakRS and the processes

in[receiveRS , cb];Q0

∣∣∣∣ in[sendSB , x];Q1

∣∣∣∣ in[inflRS , x];Q′2
∣∣∣∣ in[receiveSR, b];Q

′
3

representing the next state of protocol. This in turn leads to

in[inSOT , x01];Q′0
∣∣∣∣ in[sendSB , x];Q1

∣∣∣∣ nil
∣∣∣∣ in[receiveSR, b];Q

′
3

followed by
nil

∣∣∣∣ in[inflSB , x];Q′1
∣∣∣∣ nil

∣∣∣∣ in[receiveSR, b];Q
′
3

and finally
nil || nil || nil || nil

where still only one input port is open each time. At each of these protocol points we may
represent the further behaviour of the protocol by a single process for each of the open input
port48; this process just performs the concatenated checks and method invocations of all pro-
cesses activated until there is an output on an open port. Doing so for the real protocol we
obtain the single process in the left part of Figure 4.99. For the ideal protocol we obtain the
process in the left part of Figure 4.100.

47For readability we here present the procedure as working on processes instead of on programmes. An
implementation could work on the programme trees instead.

48Note that if there are more than one open input port at a protocol point then we need more than one
process to represent the further behaviour in the general case. However, in the special case where there are
several open input ports yet all but one of them immediately leads to a deadlock we may still use just one
process (in fact, one simple programme).

4.7. ANALYSIS OF OT PROTOCOL IN PROVERIF 135

in[inROT , b];

if inTypebit(b) = true then

new rb;

let c′b = enc(b, rb, ekR);

let pb = proof bit(c
′
b, ekR, crsR);

let cb = encPack(c′b, ekR, pb, crsR);

out[leakRS , cb];

in[inflRS ,deliver];

if verEncPackbit(cb) = true then

if ekOf(cb) = ekR then

if crsOf(cb) = crsR then

out[outSOT ,getInput];

in[inSOT , x01];

if isPair(x01) = true then

let x0 = first(x01);

let x1 = second(x01);

if isValue(x0) = true then

if isValue(x1) = true then

new r, r0, r1;

let c′b = encOf(cb);

let c′x = evalsel(c
′
b, x0, x1, r);

let d0 = com(x0, r0, ckS);

let d1 = com(x1, r1, ckS);

let px = proof sel(c
′
x, . . . , crsS);

let cx = evalPack(c′x, . . . , crsS);

out[leakSR, cx];

in[inflSR,deliver];

if verEvalPacksel(cx) = true then

if encOf1(cx) = c′b then

if ekOf(cx) = ekR then

if ckOf(cx) = ckS then

if crsOf(cb) = crsS then

let xb = dec(encOf(cx), dkR);

out[outROT , xb]

QSR
left

.
= in[inROT , b];

if inTypebit(b) = true then

new rb;

let c′b = enc(b, rb, ekR);

let pb = proof bit(c
′
b, ekR, crsR);

let cb = encPack(c′b, ekR, pb, crsR);

out[leakRS , cb];

in[inSOT , x01];

if isPair(x01) = true then

let x0 = first(x01);

let x1 = second(x01);

if isValue(x0) = true then

if isValue(x1) = true then

new r, r0, r1;

let c′x = evalsel(c
′
b, x0, x1, r);

let d0 = com(x0, r0, ckS);

let d1 = com(x1, r1, ckS);

let px = proof sel(c
′
x, . . . , crsS);

let cx = evalPack(c′x, . . . , crsS);

out[leakSR, cx];

in[inflSR,deliver];

let xb = dec(c′x, dkR);

out[outROT , xb]

Figure 4.99: The merged processes from the real protocol, with the naive concatenation on
the left and the simplified QSR

left on the right

136 CHAPTER 4. UNIVERSALLY COMPOSABLE SYMBOLIC ANALYSIS

in[inROT , b];

if inTypebit(b) = true then

new rb;

let c′b = enc(zero, rb, ekR);

let pb = proof bit(cb, ekR, crsR);

let cb = encPack(c′b, ekR, pb, crsR);

out[leakRS , cb];

in[inflRS ,deliver]

if verEncPackbit(cb) = true then

if ekOf(cb) = ekR then

if crsOf(cb) = crsR then

out[outSOT ,getInput];

in[inSOT , x01];

if isPair(x01) = true then

let x0 = first(x01);

let x1 = second(x01);

if isValue(x0) = true then

if isValue(x1) = true then

new r, r0, r1;

let c′b = encOf(cb);

let c′x = evale(c
′
b, zero, zero, r);

let d0 = com(zero, r0, ckS);

let d1 = com(zero, r1, ckS);

let px = proofsel(c
′
x, . . . , crsS);

let cx = evalPack(c′x, . . . , crsS);

out[leakSR, cx];

in[inflSR,deliver];

if verEvalPacksel(cx) = true then

if encOf1(cx) = c′b then

if ekOf(cx) = ekR then

if ckOf(cx) = ckS then

if crsOf(cx) = crsS then

if eqValue(b, zero) = true then

out[outROT , x0]

else

out[outROT , x1]

QSR
right

.
= in[inROT , b];

if inTypebit(b) = true then

new rb;

let c′b = enc(zero, rb, ekR);

let pb = proof bit(cb, ekR, crsR);

let cb = encPack(c′b, ekR, pb, crsR);

out[leakRS , cb];

in[inSOT , x01];

if isPair(x01) = true then

let x0 = first(x01);

let x1 = second(x01);

if isValue(x0) = true then

if isValue(x1) = true then

new r, r0, r1;

let c′x = evale(c
′
b, zero, zero, r);

let d0 = com(zero, r0, ckS);

let d1 = com(zero, r1, ckS);

let px = proofsel(c
′
x, . . . , crsS);

let cx = evalPack(c′x, . . . , crsS);

out[leakSR, cx];

in[inflSR,deliver];

if eqValue(b, zero) = true then

out[outROT , x0]

else

out[outROT , x1]

Figure 4.100: The merged processes from the ideal protocol, with the naive concatenation on
the left and the simplified QSR

right on the right

4.7. ANALYSIS OF OT PROTOCOL IN PROVERIF 137

Although it would now be possible to attempt a merger between the two processes to form
a biprocess, this may be made easier by first removing trivial operations.

Consider again the process for the real protocol in the left part of Figure 4.99. By the
definition of cb we see that the three checks if verEncPackbit(cb) = true then, if ekOf(cb) =
ekR then, and if crsOf(cb) = crsR then will always be satisfied, and it is hence sound to remove
them49. This leaves an input on open port inflRS followed immediately by an output on open
port outSOT ; removing this is also sound. Continuing with these transformations we obtain
the process QSR

left in the right part of Figure 4.99, and a similar reasoning allows us to soundly

simplify the ideal protocol to process QSR
right in the right part of Figure 4.100. To finally form the

biprocess BSR
right for when both players are honest we notice that the only place where QSR

left and

QSR
right differ by more than terms are at the final step: the real protocol performs a decryption

of cb while the ideal protocol tests the value of b. Adding a definition of xb in QSR
right is sound,

and so is matching out[outROT , xb] against both branches of the test in QSR
right . Doing this we

obtain the biprocess shown in Figure 4.101.
When only S is honest we may likewise concatenate and simplify the relevant processes to

obtain the two new processes QSleft and QSright given in Figure 4.102 that may be merged to

form biprocess BS in Figure 4.103. The same holds for when only R is honest; in this case QRleft
and QRright from Figure 4.104 yields biprocess BR shown in Figure 4.105.

Note that the procedure has preserved equivalence between the two processes in the sense
that if the resulting two processes are equivalent then so are the initial two. An important
point here is that since destructors may fail when reduced, the defining let statement for a term
t with destructors cannot be moved around arbitrarily: we must first ensure that there are
enough checks so that t cannot fail, or ensure that t is evaluated in exactly the same activations
as it was originally. Similarly, when copying a let statement for a term t from one process to
another as part of forming the biprocesses, we must ensure that if t is not copied into a choice
construct then no destructors in t can fail; this is for instance the case when forming BS

OT since
the let statement for b is copied to the left part but must be outside a choice construct due to
the nature of the diff equivalence (ProVerif will yield a false negative in this case).

4.7.3 Automating The Analysis Using ProVerif

Although we may feed the three biprocesses from above to ProVerif, it turns out that another
simplification is required before the tool terminates: we need to add a tag to encryptions,
preventing an encryption to be used as input to evaluation more than once. More specifically,
if an encryption is created using encryptT,ek,crs then it contains a countone tag; and when an
encryption goes through evale the tag must be countone and is changed to countzero. This
restriction is sound for this particular protocol and enough for ProVerif to terminate.

Under this simplified model we have successfully analysed the protocol and found that in all
three cases the equivalences are satisfied, and hence the protocol realises the OT functionality.

As sanity checks we also tried variations of the protocols to see if ProVerif would find the
expected flaws that would then arise. If two also becomes a member of type T = bit then
ProVerif finds an attack in all three corruption scenarios. If the private decryption key dkR is
leaked then ProVerif finds an attack when both players are honest or when only R is honest. If
the check that encOf1(cx) = c′b in the receiver is omitted then ProVerif finds an attack when
only R is honest.

49Algorithmically the let definition of a variable could be unrolled and the reduction rules be used to simply
the conditions until they are trivial.

138 CHAPTER 4. UNIVERSALLY COMPOSABLE SYMBOLIC ANALYSIS

BSR
OT

.
= in[inROT , b];

if inTypebit(b) = true then

new rb;

let c′b = enc(choice[b · zero], rb, ekR);

let pb = proof bit(c
′
b, ekR, crsR);

let cb = encPack(c′b, ekR, pb, crsR);

out[leakRS , cb];

in[inSOT , x01];

if isPair(x01) = true then

let x0 = first(x01);

let x1 = second(x01);

if isValue(x0) = true then

if isValue(x1) = true then

new r, r0, r1;

let c′x = evalsel(c
′
b, choice[x0 · zero], choice[x1 · zero], r);

let d0 = com(choice[x0 · zero], r0, ckS);

let d1 = com(choice[x1 · zero], r1, ckS);

let px = proof sel(c
′
x, . . . , crsS);

let cx = evalPack(c′x, . . . , crsS);

out[leakSR, cx];

in[inflSR,deliver];

let xb = choice[dec(c′x, dkR) · zero];

if eqValue(b, zero) = true then

out
[
outROT , choice[xb · x0]

]
else

out
[
outROT , choice[xb · x0]

]
Figure 4.101: Biprocess BSR

OT for when both are honest

4.7. ANALYSIS OF OT PROTOCOL IN PROVERIF 139

QS
left

.
= in[receiveRS , cb];

if verEncPackbit(cb) = true then

if ekOf(cb) = ekR then

if crsOf(cb) = crsR then

out[outSOT ,getInput];

in[inSOT , x01];

if isPair(x01) = true then

let x0 = first(x01);

let x1 = second(x01);

if isValue(x0) = true then

if isValue(x1) = true then

new r, r0, r1;

let c′b = encOf(cb);

let c′x = evalsel(c
′
b, x0, x1, r);

let d0 = com(x0, r0, ckS);

let d1 = com(x1, r1, ckS);

let px = proof sel(c
′
x, . . . , crsS);

let cx = evalPack(c′x, . . . , crsS);

out[sendSR, cx]

QS
right

.
= in[receiveRS , cb]

if verEncPackbit(cb) = true then

if ekOf(cb) = ekR then

if crsOf(cb) = crsR then

let b = extractEnc(proofOf(cb), extdR);

if inTypebit(b) = true then

out[outSOT ,getInput];

in[inSOT , x01];

if isPair(x01) = true then

let x0 = first(x01);

let x1 = second(x01);

if isValue(x0) = true then

if isValue(x1) = true then

if eqValue(b, zero) = true then

new r, r0, r1;

let c′b = encOf(cb);

let c′x = enc(x0, r, ekR);

let d0 = com(zero, r0, ckS);

let d1 = com(zero, r1, ckS);

let px = proofsel(c
′
x, . . . , crsS);

let cx = evalPack(c′x, . . . , crsS);

out[sendSR, cx]

else

new r, r0, r1;

let c′b = encOf(cb);

let c′x = enc(x1, r, ekR);

let d0 = com(zero, r0, ckS);

let d1 = com(zero, r1, ckS);

let px = proofsel(c
′
x, . . . , crsS);

let cx = evalPack(c′x, . . . , crsS);

out[sendSR, cx]

Figure 4.102: The merged and simplified processes from the real (left) and ideal (right)
protocol when only S is honest

140 CHAPTER 4. UNIVERSALLY COMPOSABLE SYMBOLIC ANALYSIS

BS
OT

.
= in[receiveRS , cb]

if verEncPackbit(cb) = true then

if ekOf(cb) = ekR then

if crsOf(cb) = crsR then

let b = extractEnc(proofOf(cb), extdR);

out[outSOT ,getInput];

in[inSOT , x01];

if isPair(x01) = true then

let x0 = first(x01);

let x1 = second(x01);

if isValue(x0) = true then

if isValue(x1) = true then

if eqValue(b, zero) = true then

new r, r0, r1;

let c′b = encOf(cb);

let c′x = choice
[
evalsel(c

′
b, x0, x1, r) · enc(x0, r, ekR)

]
;

let d0 = com(choice[x0 · zero], r0, ckS);

let d1 = com(choice[x1 · zero], r1, ckS);

let px = proofsel(c
′
x, . . . , crsS);

let cx = evalPack(c′x, . . . , crsS);

out[sendSR, cx]

else

new r, r0, r1;

let c′b = encOf(cb);

let c′x = choice
[
evalsel(c

′
b, x0, x1, r) · enc(x1, r, ekR)

]
;

let d0 = com(choice[x0 · zero], r0, ckS);

let d1 = com(choice[x1 · zero], r1, ckS);

let px = proofsel(c
′
x, . . . , crsS);

let cx = evalPack(c′x, . . . , crsS);

out[sendSR, cx]

Figure 4.103: Biprocess BS
OT for when only S is honest

4.7. ANALYSIS OF OT PROTOCOL IN PROVERIF 141

QR
left

.
= in[inROT , b];

if inTypebit(b) = true then

new rb;

let c′b = enc(b, rb, ekR);

let pb = proof bit(c
′
b, ekR, crsR);

let cb = encPack(c′b, ekR, pb, crsR);

out[sendRS , cb];

in[receiveSR, cx];

if verEvalPacksel(cx) = true then

if encOf1(cx) = c′b then

if ekOf(cx) = ekR then

if ckOf(cx) = ckS then

if crsOf(cb) = crsS then

let xb = dec(encOf(cx), dkR);

out[outROT , xb]

QR
right

.
= in[inROT , b];

if inTypebit(b) = true then

new rb;

let c′b = enc(zero, rb, ekR);

let pb = proof bit(c
′
b, ekR, crsR);

let cb = encPack(c′b, ekR, pb, crsR);

out[sendRS , cb];

in[receiveSR, cx];

if verEvalPacksel(cx) = true then

if encOf1(cx) = c′b then

if ekOf(cx) = ekR then

if ckOf(cx) = ckS then

if crsOf(cx) = crsS then

let x0 = extractEval1(proofOf(cx), extdS);

let x1 = extractEval2(proofOf(cx), extdS);

if eqValue(b, zero) = true then

out[outROT , x0]

else

out[outROT , x1]

Figure 4.104: The merged and simplified processes from the real (left) and ideal (right)
protocol when only R is honest

142 CHAPTER 4. UNIVERSALLY COMPOSABLE SYMBOLIC ANALYSIS

BR
OT

.
= in[inROT , b];

if inTypebit(b) = true then

new rb;

let c′b = enc(choice[b · zero], rb, ekR);

let pb = proof bit(c
′
b, ekR, crsR);

let cb = encPack(c′b, ekR, pb, crsR);

out[sendRS , cb]

in[receiveSR, cx];

if verEvalPacksel(cx) = true then

if encOf1(cx) = c′b then

if ekOf(cx) = ekR then

if ckOf(cx) = ckS then

if crsOf(cx) = crsS then

let xb = choice
[
dec(encOf(cx), dkR) · zero

]
;

let x0 = choice
[
zero · extractEval1(proofOf(cx), extdS)

]
;

let x1 = choice
[
zero · extractEval2(proofOf(cx), extdS)

]
;

if eqValue(b, zero) = true then

out
[
outROT , choice[xb · x0]

]
else

out
[
outROT , choice[xb · x1]

]
Figure 4.105: Biprocess BR

OT when only R is honest

4.8. REMARKS 143

4.8 Remarks

We end with a few straight-forward extensions together with suggestions for future work ad-
dressing some of the shortcomings of this chapter.

4.8.1 Extentions

For presetational purposes we have left out the following easy extensions in the previous sections.

Hybrid analysis approach. As mentioned in the introduction it is also possible to use our
result to analyse a broader class of protocols using a hybrid-symbolic approach. Here we are
given a protocol Π on no particular form and may now analyse it in our framework as follows:

1. decompose it into a protocol π on the support form (ie. using only the supported primitives
in the allowed ways) and a set of subprotocols Π1, . . . ,Πn (on no particular form) that share
no crypto with π nor with each other50

2. formulate ideal functionalities F1, . . . ,Fn on the supported form and show that the sub-
protocols Π1, . . . ,Πn realise them

3. formulate target ideal functionality G and simulator Sim on the supported form

4. let Sysreal be the real protocol composed of π and F1, . . . ,Fn, and let Sys ideal be the ideal
protocol composed of G and Sim; show in the symbolic model (possibly using ProVerif)

that S(Sysreal)
s∼ S(Sys ideal) holds

5. use the soundness theorem to conclude that RW(Sysreal)
c∼ RW(Sys ideal), and in turn

through composition, that Π realise G using the combined simulators

Note that in step 2. there are no requirements on whether or not Πi can be shown to realise
Fi in our framework: as long as Fi can be expressed in our model as an ideal functionality then
this step may be done recursively through our framework, but it may also be done manually
and using cryptographic primitives beyond those we support. Supporting ideal functionalities
enables this kind of hybrid analysis.

As before we also still only need to consider one session of the protocol since the composi-
tional theorem guarantees that it remains secure even when composed with itself a polynomial
number of times.

Symbolic criteria. While the approach advocated in this work requires the manual construc-
tion of a simulator, our soundness results may also be used for the symbolic criteria approach
where it is once and for all shown (possibly outside the framework) that if a protocol π sat-
isfied a given symbolic condition then there exists a simulator the ensures indistinguishability
relative to a fixed ideal functionality. This is for instance the approach taken in [CH06] where
a symbolic criteria for a key agreement functionality is given and proved sound.

4.8.2 Future Work

The following suggestions would also be interesting to consider.

Probabilistic programmes. We have only considered deterministic programmes (in that the
probabilistic choices are limited to the randomness used as input to the cryptographic primi-
tives) yet many protocols, including protocols for multiparty computation and zero-knowledge

50Note that this is not a limitation of our framework as it also applies to eg. the UC framework where only
information theoretical (and not computational) cryptography may be shared across ideal functionalities.

144 CHAPTER 4. UNIVERSALLY COMPOSABLE SYMBOLIC ANALYSIS

proofs, make fundamental use of probability as part of their security guarantees. By extending
the protocol model to allow for programmes making probabilistic choices we may capture such
protocols51.

We have circumvented this problem in a few instances by allowing the random choices to
be made by the environment: if a protocol is secure when all the random choices are done by
the adversary then clearly it is also secure when these are instead drawn from a distribution.
However this is a strictly stronger condition for some protocols, and the extra choices for the
environment may slow down the automatic analysis significantly.

Moreover, it also means that we cannot use simpler expressions to describe the output values
of ideal functionalities compared to the outputs of real protocols; in particular, the exact same
output must be computed in both cases as everything is deterministic. Without this limitation
we could for instance more clearly capture the essence of a multiplication protocol for additive
shares by idealising (abstracting) even more. We furthermore cannot let an ideal functionality
dictate that a value chosen by a realising protocol must be chosen at random.

To capture probabilistic programmes in a symbolic model we would need a probabilistic
calculus and a probabilistic formulation of observational equivalence. It seems that the work of
Goubault et al. [GPT07] might be a suitable choice allowing the soundness to carry over easily.
One downside is that no automated tool exist for this calculus.

Note that another issue rises if the probabilisic choices are furthermore allowed to depend on
the security parameter κ as it is not clear how to capture this in the symbolic model (currently
κ does not exist in this model at all). Having this option would allow us to capture the full
triple-generation protocol of [BDOZ11] where e is drawn from {0, 1}κ.

Variable-length programmes. Supporting programmes beyond the constant-length pro-
grammes used here would allow more protocols, including those for multi-party computations,
to be analysed. One possible problem here is to ensure soundness of the symbolic interpretation,
in particular in terms of polynomial running time as pointed out in [Unr11].

From two-party to multi-party. Although multi-party protocols may sometimes be nat-
urally expressed as compositions of two-party protocols, it would still be interesting to add
support for an arbritrary but fixed set of players (allowing a dynamic set of players seems likely
to introduce even more problems).

If players are allowed to forward packages from other players then we must be careful that
the translator can always extract. More specifically, we must for instance prevent that a corrupt
player forms a package using the CRS of an honest player and sends this to another honest
player; in this case the translator cannot extract as the CRS was generated for simulation,
yet it is not clear how to reject such packages in a way that is also natural in the real-world
interpretation of a real procotol.

Automatic process merging. In Section 4.7 we tried to be somewhat systematic in mas-
saging the processes from the symbolic interpretation into biprocesses suitable for the ProVerif
tool. A static analysis may be developed to properly automate this task of soundly simplifying
and merging the processes from the symbolic interpretation into suitable biprocesses.

51At a technical level, one approach would be to allow programmes with several edges having the same ψ
condition but annotated with a probability.

4.9. BIBLIOGRAPHY 145

4.9 Bibliography

[AF01] Mart́ın Abadi and Cédric Fournet. Mobile values, new names, and secure com-
munication. In Proceedings of the 28th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, POPL ’01, pages 104–115, New York, NY,
USA, 2001. ACM.

[AR02] Mart́ın Abadi and Phillip Rogaway. Reconciling two views of cryptography (the
computational soundness of formal encryption). Journal of Cryptology, 15:103–127,
2002.

[BAF05] Bruno Blanchet, Mart́ın Abadi, and Cédric Fournet. Automated Verification of
Selected Equivalences for Security Protocols. In 20th IEEE Symposium on Logic
in Computer Science (LICS 2005), pages 331–340, Chicago, IL, June 2005. IEEE
Computer Society.

[BDOZ11] Rikke Bendlin, Ivan Damg̊ard, Claudio Orlandi, and Sarah Zakarias. Semi-
homomorphic encryption and multiparty computation. In EUROCRYPT, volume
6632 of Lecture Notes in Computer Science, pages 169–188. Springer, 2011.

[Bla04] Bruno Blanchet. Automatic proof of strong secrecy for security protocols. In
Proceedings of IEEE Symposium on Security and Privacy, pages 86–100, May 2004.

[Bla08] Bruno Blanchet. A computationally sound mechanized prover for security protocols.
IEEE Transactions on Dependable and Secure Computing, 5(4):193–207, 2008.

[Bla11] Bruno Blanchet. Cryptographic Protocol Verifier (ProVerif) User Manual,
version 1.85, 2011. http://prosecco.gforge.inria.fr/personal/bblanche/

proverif/.

[BMM10] Michael Backes, Matteo Maffei, and Esfandiar Mohammadi. Computationally
sound abstraction and verification of secure multi-party computations. In FSTTCS,
volume 8 of LIPIcs, pages 352–363. Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik, 2010.

[BP03] Michael Backes and Birgit Pfitzmann. A cryptographically sound security proof of
the needham-schroeder-lowe public-key protocol. In FST TCS 2003: Foundations
of Software Technology and Theoretical Computer Science, volume 2914 of Lecture
Notes in Computer Science, pages 1–12. Springer Berlin Heidelberg, 2003.

[BP04] Michael Backes and Birgit Pfitzmann. Symmetric encryption in a simulatable dolev-
yao style cryptographic library. In Proceedings of the 17th IEEE Computer Security
Foundations Workshop, pages 204 – 218, june 2004.

[BP06] Michael Backes and Birgit Pfitzmann. On the cryptographic key secrecy of the
strengthened yahalom protocol. In Security and Privacy in Dynamic Environments,
volume 201 of IFIP International Federation for Information Processing, pages 233–
245. Springer US, 2006.

[BPW03] Michael Backes, Birgit Pfitzmann, and Michael Waidner. A composable crypto-
graphic library with nested operations. In Proceedings of the 10th ACM conference
on Computer and communications security, CCS ’03, pages 220–230, New York,
NY, USA, 2003. ACM.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In FOCS, pages 136–145. IEEE Computer Society, 2001.

http://prosecco.gforge.inria.fr/personal/bblanche/proverif/
http://prosecco.gforge.inria.fr/personal/bblanche/proverif/

146 CHAPTER 4. UNIVERSALLY COMPOSABLE SYMBOLIC ANALYSIS

[Can05] Ran Canetti. Universally Composable Security: A New Paradigm for Cryptographic
Protocols, 2005. http://eprint.iacr.org/2000/067.

[Can08] Ran Canetti. Composable formal security analysis: Juggling soundness, simplicity
and efficiency. In ICALP, volume 5126 of Lecture Notes in Computer Science, pages
1–13. Springer, 2008.

[CC08] Hubert Lundh Comon and Véronique Cortier. Computational soundness of ob-
servational equivalence. In ACM Conference on Computer and Communications
Security, pages 109–118. ACM, 2008.

[CG10] Ran Canetti and Sebastian Gajek. Universally composable symbolic analysis of
diffie-hellman based key exchange. IACR Cryptology ePrint Archive, 2010:303,
2010.

[CH06] Ran Canetti and Jonathan Herzog. Universally composable symbolic analysis of
mutual authentication and key-exchange protocols. In Theory of Cryptography,
volume 3876 of Lecture Notes in Computer Science, pages 380–403. Springer Berlin
Heidelberg, 2006.

[CHKS12] Hubert Lundh Comon, Masami Hagiya, Yusuke Kawamoto, and Hideki Sakurada.
Computational soundness of indistinguishability properties without computable
parsing. In Information Security Practice and Experience, volume 7232 of Lecture
Notes in Computer Science, pages 63–79. Springer Berlin Heidelberg, 2012.

[CKW11] Véronique Cortier, Steve Kremer, and Bogdan Warinschi. A survey of symbolic
methods in computational analysis of cryptographic systems. Journal of Automated
Reasoning, 46:225–259, 2011.

[CW11] Veronique Cortier and Bogdan Warinschi. A composable computational soundness
notion. In Proceedings of the 18th ACM conference on Computer and communica-
tions security, CCS ’11, pages 63–74, New York, NY, USA, 2011. ACM.

[DDMR07] Anupam Datta, Ante Derek, John C. Mitchell, and Arnab Roy. Protocol compo-
sition logic (PCL). Electronic Notes in Theoretical Computer Science, 172(0):311–
358, 2007.

[DKMR05] Anupam Datta, Ralf Küsters, John C. Mitchell, and Ajith Ramanathan. On the
relationships between notions of simulation-based security. In Theory of Cryptog-
raphy, volume 3378 of Lecture Notes in Computer Science, pages 476–494. Springer
Berlin Heidelberg, 2005.

[DKP09] Stéphanie Delaune, Steve Kremer, and Olivier Pereira. Simulation based security in
the applied pi calculus. In IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS 2009), volume 4 of Leib-
niz International Proceedings in Informatics (LIPIcs), pages 169–180, Dagstuhl,
Germany, 2009. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[DNO08] Ivan Damg̊ard, Jesper Buus Nielsen, and Claudio Orlandi. Essentially optimal
universally composable oblivious transfer. In ICISC, volume 5461 of Lecture Notes
in Computer Science, pages 318–335. Springer, 2008.

[DPSZ12] Ivan Damg̊ard, Valerio Pastro, Nigel Smart, and Sarah Zakarias. Multiparty com-
putation from somewhat homomorphic encryption. In Advances in Cryptology –
CRYPTO 2012, volume 7417 of Lecture Notes in Computer Science, pages 643–662.
Springer Berlin Heidelberg, 2012.

http://eprint.iacr.org/2000/067

4.9. BIBLIOGRAPHY 147

[GPT07] Jean Larrecq Goubault, Catuscia Palamidessi, and Angelo Troina. A probabilis-
tic applied pi-calculus. In Programming Languages and Systems, volume 4807 of
Lecture Notes in Computer Science, pages 175–190. Springer Berlin Heidelberg,
2007.

[LN08] Peeter Laud and Long Ngo. Threshold homomorphic encryption in the universally
composable cryptographic library. In Provable Security, volume 5324 of Lecture
Notes in Computer Science, pages 298–312. Springer Berlin / Heidelberg, 2008.

[MRST06] John C. Mitchell, Ajith Ramanathan, Andre Scedrov, and Vanessa Teague. A
probabilistic polynomial-time process calculus for the analysis of cryptographic
protocols. Theoretical Computer Science, 353(1-3):118–164, 2006.

[MW04] Daniele Micciancio and Bogdan Warinschi. Soundness of formal encryption in the
presence of active adversaries. In Theory of Cryptography, volume 2951 of Lecture
Notes in Computer Science, pages 133–151. Springer Berlin Heidelberg, 2004.

[PW01] Birgit. Pfitzmann and Michael Waidner. A model for asynchronous reactive sys-
tems and its application to secure message transmission. In Proceedings of IEEE
Symposium on Security and Privacy, pages 184 –200, 2001.

[Unr11] Dominique Unruh. Termination-insensitive computational indistinguishability (and
applications to computational soundness). In CSF, pages 251–265. IEEE Computer
Society, 2011.

	Acknowledgements
	Preface
	English Résumé
	Dansk Resumé
	Table of Contents
	Introduction
	Symbolic Models
	Automated Analysis of Authenticity
	Capturing and Analysing Privacy
	Computational Sound Composable Analysis
	Bibliography

	Type-Based Verification of Authenticity
	Introduction
	Processes
	Type System
	Type Inference
	Implementation and Experiments
	Extensions
	Related Work
	Relation to Gordon-Jeffrey Type System
	Proofs of Lemmas
	Bibliography

	Privacy for Anonymous Location Based Services
	Introduction
	The VPriv Scheme
	Formal Model
	Privacy for Interactive Zero-Knowledge Protocols
	Privacy Analysis
	Conclusion
	Bibliography

	Universally Composable Symbolic Analysis
	Introduction
	Protocol Model
	Preliminaries
	Real-world Interpretation
	Intermediate Interpretation
	Symbolic Model and Interpretation
	Analysis of OT Protocol in ProVerif
	Remarks
	Bibliography

