
PhD Defense

Department of Computer Science
Aarhus University

19 June 2013

Morten Dahl Jørgensen



PhD Overview

Symbolic Analysis of Cryptographic Protocols
Authenticity Privacy Universal Composability

Secure Computation
Division Fresco



Symbolic Analysis
of Cryptographic Protocols



Symbolic Analysis
of Cryptographic Protocols

Main approach: simplify via abstraction

• aid manual efforts
• allow automated tools
• reduce required expertise

Develop methods to assist system designers and implementors in 
verifying that their creations do not contain security flaws 

→ in particular w.r.t. misuse 
of cryptographic techniques

For which protocols & properties 
can this be done?



• A protocol is a “recipe” for a set of players that describes 
what steps they can take in order to perform a specific task

- example: French Greeting

• A cryptographic protocol employs cryptographic primitives

- example: Secure Email

• Systems use these protocols as sub-components:

- online banking: “send secure email”
- websites: “verify password”

Symbolic Analysis
of Cryptographic Protocols



Symbolic Analysis
of Cryptographic Protocols

Analysis process

Requirements

yes+proof / no+attack

Protocol

Note, no focus on:

- social engineering (phishing)
- policy flaw
- physical properties of hardware
- software bug in implementation

Mathematical argument explaining why a protocol is “secure”

• a security requirement determines what secure means

• need mathematical model



Symbolic Analysis
of Cryptographic Protocols

• high abstraction level

• symbolic manipulation

• restricted operations

• simple analysis

• good model of the real world

• computation on bitstrings

• flexible operations

• complex analysis

Computational Symbolic

2 · π
4

= 1.57079632679
2 · π
4

=
1

2
π

2 · π = 6.28318530718 2 · π = 2 · π



Symbolic Analysis
of Cryptographic Protocols

Computational Symbolic

keys, nonces, 
randomness long random bitstrings unguessable atomic symbols

ciphertexts, 
etc.

bitstrings: c
unlimited manipulation

terms: enc(m,k,r)
rules for manipulation

attacker no restrictions besides limited 
computing power only few selected operations



Our Work

Authenticity Privacy UC

properties simple intermediate advanced

primitives simple simple advanced

motivation automated analysis concrete system computational sound



Authenticity Analysis
[DKSH11]

Joint work with Naoki Kobayashi, Yunde Sun, 
and Hans Hüttel; paper published at ATVA’11

In essence we:

• develop automatic analysis method for 
authenticity properties

• use type system to prove properties 

• automate proof finding using type inference

Our main contributions:

• non-trivial modification of existing type system 
[GJ04] to support type inference

• bonus: capture multi-party protocols

• practical test of the algorithm’s efficiency

Authenticity 
property

Symbolic 
protocol

Type inference 
algorithm

Type 
system

Requirements
(auth)

yes+proof / no+hints

Protocol

Paper 1: Authenticity



Authenticity Properties
• Informally: that data is of expected origin

• Formalised as correspondence assertions [WL93]

• introduce approve and expect events

• require that in all executions:

- every expect must have been approved

- if so we say a correspondence exists

• Example: Authenticated Message

Paper 1: Authenticity



Type System

... leads to an accumulation of constraints

M : T Pub(T )

out(ch,M);P

x : T Taint(T )

in(ch, x);P

Pub(T ) Taint(T )

Pub(SKey(T ))

Pub(T )

Pub(DKey(T ))

Taint(T )

Pub(EKey(T ))

Paper 1: Authenticity

Theorem: If a protocol type-checks then there always exists a correspondence



Plus and Minus
Strengths:

• efficient algorithms and modular analysis

• moderate expert knowledge; programmer familiarity

• explicit verifiable proofs

• extendable to implementation-level analysis

Weaknesses:

• simple primitives and properties

- many details hidden in the typing rules; expert-task to extend

• overly conservative (price of simplicity)

• may not be able to provide an explicit attack

• no real-world world guarantees

Paper 1: Authenticity



Privacy Analysis 
[DDS10] and [DDS11]

Joint work with Stéphanie Delaune and Graham Steel; 
papers published at ESORICS’10 and TOSCA’11

In essence we:

• formally analyse two concrete systems 
w.r.t. privacy

• formally express the two systems

• formulate suitable notions of privacy

• carry our analysis using the ProVerif tool

Our main contributions:

• further investigate the modelling of privacy by 
indistinguishability (also voting + RFID tags)

• report on analysis results

• investigate current level of tool support

Equivalence 
property

Specific
symbolic 
protocol

ProVerif

Specific 
system

Requirements 
(privacy)

yes+-- / no+attack

Paper 2: Privacy



The VPriv System
Paper 2: Privacy



The VPriv System

#746ab
#mcj48
#j37ck

Paper 2: Privacy



Route Privacy
Paper 2: Privacy



Route Privacy

#83ncs
#9bv3d
#48cn1

Paper 2: Privacy



Route Privacy
Paper 2: Privacy



Route Privacy

#jdn24
#jn104
#103nc

Paper 2: Privacy



Privacy as an Equivalence
Privacy modelled as equivalence between two different behaviours

Csetup
�
Vkitt(route left) | Vdelorean(routeright)

�

∼

Csetup
�
Vdelorean(route left) | Vkitt(routeright)

�

Paper 2: Privacy



Plus and Minus
Strengths:

• more powerful properties

• more flexible on primitives; easier to extend; easier to understand

- nonces, symmetric encryption, asymmetric encryption, and signatures

- nonces, commitments, hashing, and list permutations

• often we get a concrete attack trace

Weaknesses:

• requires more expert knowledge (modelling + tool operation)

• no explicit proof

• overly conservative (price of tool support for equivalence)

• no real-world world guarantees

Paper 2: Privacy



UC Analysis
[DD13]

Joint work with Ivan Damgård; unpublished

In essence we:

• develop framework for simplifying/automating the 
analysis of advanced protocols and properties in a 
sound and composable manner

• formulate a class of powerful protocols

• give a general computational soundness result

• illustrate the method on a few examples

Our main contributions:

• show computational soundness of powerful primitives

• motivate the use of Universal Composability [Can05]
in the symbolic setting

• analyse a concrete protocol using ProVerif

• list heuristics for automating the analysis

Symbolic 
ideal func.

Symbolic 
protocol

Equivalence 
checking

Protocol
Ideal 

functionality

yes+(--) / no+attack

yes+(--) / (no+attack)

Requirements

Paper 3: UC



Ideal Functionalities
• A magic box that players may use instead of a protocol

• protocol: how a task is performed

• ideal functionality: what a task does

- including its security guarantees

• verifying a protocol boils down to 

- checking an equivalence

- constructing a simulator

• Example: Authenticated Message and Coin-Flipping

• Ideal functionalities for compositional analysis

- and compositional design

Paper 3: UC



Computational Soundness
High-level language

Computational
interpretation

Symbolic
interpretation

Protocol Ideal func

Protocol Ideal funcProtocol Ideal func∼ ∼=⇒

Paper 3: UC



Plus and Minus
Strengths:

• even more powerful properties

• powerful primitives:

- homomorphic encryption, commitments, and zero-knowledge proofs

- coin-flip, oblivious transfer, multiplication-triple generation

• real-world world guarantees

• modular and composable analysis

• (in some cases) suitable for current tools (ProVerif)

Weaknesses:

• requires expert knowledge

- formulating ideal functionalities

- partial proof construction (simulator)

- tool operation

• fixed on primitives and two-party function evaluation protocols; expert-task to extend

Paper 3: UC



Summary
Authenticity Privacy Universal Comp.

properties correspondence equivalence ideal functionality

primitives encryption, 
signatures

encryption, signatures,
commitments, hashing

homomorphic encryption,
commitments,

zero-knowledge proofs

expertise automatic + efficient modelling;
tool support

ideal func. + simulator;
some tool support

real-world (extendable to
 source code) real-world case study computational sound



Thank you


