
Type-Based Automated Verification of Authenticity in
Asymmetric Cryptographic Protocols

Morten Dahl2, Naoki Kobayashi1, Yunde Sun1, and Hans Ḧuttel2

1 Tohoku University
2 Aalborg University

Abstract. Gordon and Jeffrey developed a type system for verification of asym-
metric and symmetric cryptographic protocols. We propose a modified version of
Gordon and Jeffrey’s type system and develop a type inference algorithm for it,
so that protocols can be verified automatically as they are, without any type anno-
tations or explicit type casts. We have implemented a protocol verifierSPICA2
based on the algorithm, and confirmed its effectiveness.

1 Introduction

Security protocols play a crucial role in today’s Internet technologies including elec-
tronic commerce and voting. Formal verification of security protocols is thus an impor-
tant, active research topic, and a variety of approaches to (semi-)automated verification
have been proposed [8, 5, 15]. Among others, type-based approaches [1, 14, 15] have
advantages that protocols can be verified in a modular manner, and that it is relatively
easy to extend them to verify protocols at the source code level [4]. They have however a
disadvantage that users have to provide complex type annotations, which require exper-
tise in both security protocols and type theories. Kikuchi and Kobayashi [18] developed
a type inference algorithm but it works only for symmetric cryptographic protocols.

To overcome the limitation of the type-based approaches and enable fully automated
protocol verification, we integrate and extend the two lines of work – Gordon and Jef-
frey’s work [15] for verifying protocols using both symmetric and asymmetric cryp-
tographic protocols, and Kikuchi and Kobayashi’s work. The outcome is an algorithm
for automated verification of authenticity in symmetric and asymmetric cryptographic
protocols. The key technical novelty lies in the symmetric notion ofobligationsandca-
pabilitiesattached to name types, which allows us to reason about causalities between
actions of protocol participants in a general and uniform manner in the type system. It
not only enables automated type inference, but also brings a more expressive power,
enabling, e.g., verification of multi-party cryptographic protocols. We have developed a
type inference algorithm for the new type system, and implemented a protocol verifica-
tion tool SPICA2 based on the algorithm. According to experiments,SPICA2 is very
fast; it could successfully verify a number of protocols in less than a second.

The rest of this paper is structured as follows. Section 2 introduces spi-calculus [2]
extended with correspondence assertions as a protocol description language. Sections 3
and 4 present our type system and sketches a type inference algorithm. Section 5 reports
implementation and experiments. Sections 6 and 7 discuss extensions and related work
respectively. Proofs are found in the full version of this paper [10].

2 Processes

This section defines the syntax and operational semantics of the spi-calculus extended
with correspondence assertions, which we call spiCA. The calculus is essentially the
same as that of Gordon and Jeffrey [15], except (i) there are no type annotations or
casts (as they can be automatically inferred by our type inference algorithm), and (ii)
there are no primitives for witness and trust; supporting them is left for future work.

We assume that there is a countable set ofnames, ranged over bym, n, k, x, y, z,
By convention, we often usek,m, n, . . . for free names andx, y, z, . . . for bound names.

The set of messages, ranged over byM , is given by:

M ::= x | (M1,M2) | {M1}M2 | {|M1|}M2

(M1,M2) is a pair consisting ofM1 andM2. The message{M1}M2 ({|M1|}M2
, resp.)

represents the ciphertext obtained by encryptingM1 with the symmetric (asymmetric,
resp.) keyM2. For the asymmetric encryption, we do not distinguish between encryp-
tion and signing;{|M1|}M2

denotes an encryption ifM2 is a public key, while it denotes
signing ifM2 is a private key.

The set of processes, ranged over byP , is given by:

P ::= 0 | M1!M2 | M?x.P | (P1 |P2) | ∗P | (νx)P | (νsymx)P | (νasymx, y)P
| check M1 is M2.P | split M is (x, y).P | match M1 is (M2, y).P
| decrypt M1 is {x}M2 .P | decrypt M1 is {|x|}M2

−1 .P
| beginM.P | endM

The names denoted byx, y areboundin P . We write [M1/x1, . . . ,Mn/xn]P for
the process obtained by replacing every free occurrence ofx1, . . . , xn in P with M1, . . . ,
Mn. We writeFN(P) for the set of free (i.e. non-bounded) names inP .

Process0 does nothing,M1!M2 sendsM2 over the channelM1, andM1?x.P waits
to receive a message on channelM1, and then bindsx to it and behaves likeP . P1 |P2

executesP1 andP2 in parallel, and∗P executes infinitely many copies ofP in parallel.
We have three kinds of name generation primitives:(νx) for ordinary names,(νsymx)

for symmetric keys, and(νasymx1, x2,) for asymmetric keys.(νasymx1, x2, P) creates
a fresh key pair(k1, k2) (wherek1 andk2 are encryption and decryption keys respec-
tively), and behaves like[k1/x1, k2/x2]P . The processcheck M1 is M2.P behaves
like P if M1 andM2 are the same name, and otherwise behaves like0. The process
split M is (x, y).P behaves like[M1/x,M2/y]P if M is a pair(M1, M2); otherwise
it behaves like0. match M1 is (M2, y).P behaves like[M3/y]P if M1 is a pair of
the form (M2,M3); otherwise it behaves like0. Processdecrypt M1 is {x}M2 .P
(decrypt M1 is {|x|}M2

−1 .P , resp.) decrypts ciphertextM1 with symmetric (asym-
metric, resp.) keyM2, bindsx to the result and behaves likeP ; if M1 is not an encryp-
tion, or an encryption with a key not matchingM2, then it behaves like0. The process
beginM.P raise an eventbeginM and behaves likeP , while endM just raises an
eventendM ; they are used to express expected authenticity properties.

Example 1.We use the three protocols in Figure 1, taken from [15], as running ex-
amples. POSH and SOSH protocols aim to pass a new messagemsg from B to A, so

POSH:

A->B: n
B begins msg
B->A: {|(msg,n)| }skB

A ends msg

SOPH

A->B: {|(msg,n)| }pkB

B begins msg
B->A: n
A ends msg

SOSH

A->B: {|n| }pkB

B begins msg
B->A: {|msg,n| }pkA

A ends msg

Fig. 1. Informal Description of Three Protocols

(νasymskB , pkB)(net!pkB | (* create asymmetric keys for B and makepkB public *)
(νnon)(net!non| (* A creates a nonce and sends it *)
net?ctext.decrypt ctextis {|x|}pkB

−1 . (* receive a cypertext and decrypt it*)
split x is (m, non′).check nonis non′. (* decompose pairx and check nonce *)
endm) | (* believe thatm came from B *)
net?n. (* B receives a nonce *)
(νmsg)begin msg. (* create a message and declare that it is going to be sent*)
net!{|(msg, n)|}skB

) (* encrypt and send(msg, n) *)

Fig. 2. Public-Out-Secret-Home (POSH) protocol in spiCA

thatA can confirm thatmsg indeed comes fromB, while SOPH protocol aims to pass
msg from A to B, so thatA can confirm thatmsg has been received byB. The sec-
ond and fourth lines of each protocol expresses the required authenticity by using Woo
and Lam’s correspondence assertions [20]. “B begins msg ” on the second line of
POSH means “B is going to sendmsg”, and “A ends msg” on the fourth line means
“A believes thatB has sentmsg”. The required authenticity is then expressed as a cor-
respondence between begin- and end-events: whenever an end-event (“A ends msg”
in this example) occurs, the corresponding begin-event (“B begins msg ”) must have
occurred.3 In the three protocols, the correspondence between begin- and end-events is
guaranteed in different ways. In POSH, the correspondence is guaranteed by the signing
of the second message withB’s secret key, so thatA can verify thatB has created the
pair(msg, n). In SOPH, it is guaranteed by encrypting the first message with B’s public
key, so that the noncen, used as an acknowledgment, cannot be forged by an attacker.
SOSH is similar to POSH, but keepsn secret by using A and B’s public keys.

Figure 2 gives a formal description of POSH protocol, represented as a process in
spiCA. The first line is an initial set-up for the protocol. An asymmetric key pair for B is
created and the decryption keypkB is sent on a public channelnet, on which an attacker
can send and receive messages. The next four lines describe the behavior ofA. On the
second line, a noncenon is created and sent alongnet. On the third line, a ciphertext
ctext is received and decrypted (or verified) with B’s public key. On the fourth line,
the pair is decomposed and it is checked that the second component coincides with the
nonce sent before. On the fifth line, an end-event is raised, meaning thatA believes that

3 There are two types of correspondence assertions in the literature: non-injective (or one-to-
many) and injective (or one-to-one) correspondence. Throughout the paper we consider the
latter.

msgcame fromB. The last three lines describe the behavior ofB. On the sixth line, a
noncen is received fromnet. On the seventh line, a new messagemsgis created and
a begin-event is raised, meaning thatB is going to sendmsg. On the last line, the pair
(msg, n) is encrypted (or signed) with B’s secret key and sent onnet. ut

Following Gordon and Jeffrey, we call a processsafeif it satisfies correspondence
assertions (i.e. for each end-event, a corresponding begin-event has occurred before),
androbustly safeif a process is safe in the presence of arbitrary attackers (representable
in spiCA). Proving the robust safety automatically is the goal of protocol verification
in the present paper. To formalize the robust safety, we use the operational semantics
shown in Figure 3. A runtime state is a quadruple〈Ψ, E,N,K〉, whereΨ is a multiset
of processes, andE is the set of messages on which begin-events have occurred but the
matching end-events have not.N is the set of names (including keys) created so far, and
K is the set of key pairs. The special runtime stateError denotes that correspondence
assertions have been violated. Note that a reduction gets stuck when a process does not
match a rule. For example,split M is (x, y).P is reducible only ifM is of the form
(M1,M2). Using the operational semantics, the robust safety is defined as follows.

〈Ψ] {n?y.P, n!M}, E, N,K〉 −→ 〈Ψ] {[M/y]P}, E, N,K〉 (R-COM)

〈Ψ] {P |Q}, E, N,K〉 −→ 〈Ψ] {P, Q}, E, N,K〉 (R-PAR)

〈Ψ] {∗P}, E, N,K〉 −→ 〈Ψ] {∗P , P}, E, N,K〉 (R-REP)
〈Ψ] {(νx)P}, E, N,K〉 −→ 〈Ψ] {[n/x]P}, E, N ∪ {n},K〉 (n /∈ N) (R-NEW)

〈Ψ] {(νsymx)P}, E, N,K〉 −→ 〈Ψ] {[k/x]P}, E, N ∪ {k},K〉 (k /∈ N) (R-NEWSK)

〈Ψ] {(νasymx, y)P}, E, N,K〉
−→ 〈Ψ] {[k1/x, k2/y]P}, E, N ∪ {k1, k2},K ∪ {(k1, k2)}〉 (k1, k2 /∈ N)

(R-NEWAK)

〈Ψ] {check n is n.P}, E, N,K〉 −→ 〈Ψ] {P}, E, N,K〉 (R-CHK)

〈Ψ] {split (M, N) is (x, y).P}, E, N,K〉 −→ 〈Ψ] {[M/x, N/y]P}, E, N,K〉
(R-SPLT)

〈Ψ] {match (M, N) is (M, z).P}, E, N,K〉 −→ 〈Ψ] {[N/z]P}, E, N,K〉
(R-MTCH)

〈Ψ] {decrypt {M}k is {x}k.P}, E, N,K〉 −→ 〈Ψ] {[M/x]P}, E, N,K〉 (R-DECS)

〈Ψ] {decrypt {|M |}k1
is {|x|}k2−1 .P}, E, N,K〉

−→ 〈Ψ] {[M/x]P}, E, N,K〉 (if (k1, k2) ∈ K)
(R-DECA)

〈Ψ] {beginM.P}, E, N,K〉 −→ 〈Ψ] {P}, E] {M}, N,K〉 (R-BGN)

〈Ψ] {endM}, E] {M}, N,K〉 −→ 〈Ψ, E, N,K〉 (R-END)

〈Ψ] {endM}, E, N,K〉 −→ Error (if M 6∈ E) (R-ERR)

Fig. 3. Operational Semantics

Definition 21 (safety, robust safety)A processP is safeif 〈{P}, ∅,FN(P), ∅〉 6−→∗

Error. A processP is robustly safeif P |O is safe for every spiCA processO that
contains no begin/end/check operations.4

3 Type System

This section presents a type system such that well-typed processes are robustly safe.
This allows us to reduce protocol verification to type inference.

3.1 Basic Ideas

Following the previous work [14, 15, 18], we use the notion ofcapabilities(called ef-
fects in [14, 15]) in order to statically guarantee that end-events can be raised only after
the corresponding begin-events. A capabilityϕ is a multiset ofatomic capabilitiesof
the formend(M), which expresses a permission to raise “endM ” event. The robust
safety of processes is guaranteed by enforcing the following conditions on capabilities:
(i) to raise an “endM ” event, a process must possess and consume an atomicend(M)
capability; and (ii) an atomicend(M) capability is generated only by raising a “begin
M ” event. Those conditions can be statically enforced by using a type judgment of the
form:Γ ; ϕ ` P , which means thatP can be safely executed under the type environment
Γ and the capabilities described byϕ. For example,x :T ; {end(x)} ` endx is a valid
judgment, butx :T ; ∅ ` endx is not. The two conditions above can be locally enforced
by the following typing rules for begin and end events:

Γ ;ϕ + {end(M)} ` P

Γ ;ϕ ` beginM.P Γ ; ϕ + {end(M)} ` endM

The left rule ensures that the new capabilityend(M) is available after the begin-event,
and the right rule for end ensures that the capabilityend(M) must be present.

The main difficulty lies in how to pass capabilities between processes. For example,
recall the POSH protocol in Figure 2, where begin- and end-events are raised by differ-
ent protocol participants. The safety of this protocol can be understood as follows:B
obtains the capabilityend(msg) by raising the begin event, and then passes the capabil-
ity to A by attaching it to the noncen. A then extracts the capability and safely executes
the end event. Asn is signed withB’s private key, there is no way for an attacker to
forge the capability. For another example, consider the SOPH protocol in the middle
of Figure 1. In this case, the noncen is sent in clear text, so thatB cannot pass the
capability toA through the second message. Instead, the safety of the SOPH protocol
is understood as follows:A attaches ton (in the first message) anobligationto raise the
begin-event.B then discharges the obligation by raising the begin-event, and notifies of
it by sending backn. Here, note that an attacker cannot forgen, as it is encrypted by
B’s public key in the first message.

4 Having no check operations is not a limitation, as an attacker process can check the equality
of n1 andn2 by match (n1, n1) is (n2, x).P .

To capture the above reasoning by using types, we introduce types of the form
N(ϕ1, ϕ2), which describes names carrying an obligationϕ1 and a capabilityϕ2. In
the examples above,n is given the typeN(∅, {end(msg)}) in the second message of
POSH protocol, and the typeN({end(msg)}, ∅) in the first message of SOPH protocol.

The above typesN(∅, {end(msg)}) and N({end(msg)}, ∅) respectively corre-
spond toresponseandchallenge typesin Gordon and Jeffrey’s type system [15]. Thanks
to the uniform treatment of name types, type inference for our type system reduces to
a problem of solving constraints on capabilities and obligations, which can further be
reduced to linear programming problems by using the technique of [18]. The uniform
treatment also allows us to express a wider range of protocols (such as multi-party
cryptographic protocols). Note that neither obligations nor asymmetric cyptography are
supported by the previous type system for automated verification [18]; handling them
requires non-trivial extensions of the type system and the inference algorithm.

3.2 Types

Definition 31 The syntax of types, ranged over byτ , is given by:

τ ::= N`(ϕ1, ϕ2) | SKey(τ) | DKey(τ) | EKey(τ) | τ1 × τ2

ϕ ::= {A1 7→ r1, . . . , Am 7→ rm} capabilities
A ::= end(M) | chk`(M, ϕ) atomic cap.
ι ::= x | 0 | 1 | 2 | · · · extended names
` ::= Pub | Pr name qualifiers

Here,ri ranges over non-negative rational numbers.

The typeN`(ϕ1, ϕ2) is assigned to names carrying obligationsϕ1 and capabilitiesϕ2.
Here, obligations and capabilities are mappings from atomic capabilities to rational
numbers. For example,N`({end(a) 7→ 1.0}, {end(b) 7→ 2.0}) describes a name that
carries the obligation to raisebegin a once, and the capability to raiseend b twice.
Fractional values are possible:N`(∅, {end(b) 7→ 0.5}) means that the name carries a
half of the capability to raiseend b, so that if combined with another half of the capa-
bility, it is allowed to raiseend b. The introduction of fractions slightly increases the
expressive power of the type system, but the main motivation for it is rather to enable ef-
ficient type inference as in [18]. When the ranges of obligations and capabilities are inte-
gers, we often use multiset notations; for example, we write{end(a), end(a), end(b)}
for {end(a) 7→ 2, end(b) 7→ 1}. The atomic capabilitychk`(M, ϕ) expresses the ca-
pability to check equality onM by check M is M ′.P : since nonce checking releases
capabilities this atomic effect is used to ensure that each nonce can only be checked
once. The componentϕ expresses the capability that can be extracted by the check
operation (see the typing rule for check operations given later).

Qualifier ` attached to name types are essentially the same as thePublic/Private
qualifiers in Gordon and Jeffrey’s type system and express whether a name can be made
public or not. We often writeUn for NPub(∅, ∅).

The typeSKey(τ) describes symmetric keys used for decrypting and encrypting
values of typeτ . The typeEKey(τ) (DKey(τ), resp.) describes asymmetric keys

used for encrypting (decrypting, resp.) values of typeτ . The typeτ1 × τ2 describes
pairs of values of typesτ1 and τ2. As in [18], we express the dependency of types
on names by using indices. For example, the typeUn × N`(∅, {end(0)}) denotes a
pair (M1, M2) whereM1 has typeUn andM2 has typeN`(∅, {end(M1)}). The type
Un×(Un×NPub(∅, {end(0, 1) 7→ r}) describes triples of the form(M1, (M2, M3)),
whereM1 andM2 have typeUn, andM3 has typeNPub(∅, {end(M2,M1) 7→ r}).
In general, an indexi is a natural number referring to thei-th closest first component
of pairs. In the syntax of atomic capabilitiesend(M), M is an extended message that
may contain indices. We use the same metavariableM for the sake of simplicity.

Predicates on typesFollowing Gordon and Jeffrey, we introduce two predicatesPub
andTaint on types, inductively defined by the rules in Figure 4.Pub(τ) means that a
value of typeτ can safely be made public by e.g. sending it through a public channel.
Taint(τ) means that a value of typeτ may have come from an untrusted principal
and hence cannot be trusted. It may for instance have been received through a public
channel or have been extracted from a ciphertext encrypted with a public key.

The first rule says that forN`(ϕ1, ϕ2) to be public, the obligationϕ1 must be empty,
as there is no guarantee that an attacker fulfills the obligation. Contrary, forN`(ϕ1, ϕ2)
to be tainted, the capabilityϕ2 must be empty if̀ = Pub, as the name may come from
an attacker and the capability cannot be trusted.5

Pub andTaint are a sort of dual, flipped by the type constructorEKey. In terms
of subtyping,Pub(τ) andTaint(τ) may be understood asτ ≤ Un andUn ≤ τ
respectively, whereUn is the type of untrusted, non-secret data. Note thatDKey is
co-variant,EKey is contra-variant, andSKey is invariant; this is analogous to Pierce
and Sangiorgi’s IO types with subtyping [19].

` = Pub ϕ1 = ∅
Pub(N`(ϕ1, ϕ2))

` = Pub ⇒ ϕ2 = ∅
Taint(N`(ϕ1, ϕ2))

Pub(τ1) Pub(τ2)

Pub(τ1 × τ2)

Taint(τ1) Taint(τ2)

Taint(τ1 × τ2)

Pub(τ) Taint(τ)

Pub(SKey(τ))

Pub(τ) Taint(τ)

Taint(SKey(τ))

Taint(τ)

Pub(EKey(τ))

Pub(τ)

Taint(EKey(τ))

Pub(τ)

Pub(DKey(τ))

Taint(τ)

Taint(DKey(τ))

Fig. 4. PredicatesPub andTaint

5 These conditions are more liberal than the corresponding conditions in Gordon and Jef-
frey’s type system. In their type system, forPublic Challenge ϕ1 (which corresponds to
NPub(ϕ1, ∅) in our type system) to be tainted,ϕ1 must also be empty.

Operations and relations on capabilities and typesWe write dom(ϕ) for the set
{A | ϕ(A) > 0}. We identify capabilities up to the following equality≈:

ϕ1 ≈ ϕ2 ⇐⇒ (dom(ϕ1) = dom(ϕ2) ∧ ∀A ∈ dom(ϕ1).ϕ1(A) = ϕ2(A)).

We write ϕ ≤ ϕ′ if ϕ(A) ≤ ϕ′(A) holds for everyA ∈ dom(ϕ) and we define the
summation of two capabilities by:(ϕ1 + ϕ2)(A) = ϕ1(A) + ϕ2(A). This is a natural
extension of the multiset union. We writeϕ1−ϕ2 for the leastϕ such thatϕ1 ≤ ϕ+ϕ2.

As we use indices to express dependent types, messages may be substituted in types.
Let i be an index andM a message. The substitution[M/i]τ is defined inductively in
the straight-forward manner, except for pair types where

[M/i](τ1 × τ2) = ([M/i]τ1)× ([M/(i + 1)]τ),

such that the index is shifted for the second component.

3.3 Typing

We introduce two forms of type judgments:Γ ;ϕ ` M : τ for messages, andΓ ;ϕ `
P for processes, whereΓ , called a type environment, is a sequence of type bindings
of the formx1 : τ1, . . . , xn : τn. Γ ;ϕ ` M : τ means thatM evaluates to a value
of type τ under the assumption that each name has the type described byΓ and that
capabilityϕ is available.Γ ; ϕ ` P means thatP can be safely executed (i.e. without
violation of correspondence assertions) if each free name has the type described byΓ
and the capabilityϕ is available. For example,x : Un; {end(x)} ` endx is valid but
x : Un; ∅ ` endx is not.

We consider only the judgements that arewell-formedin the sense that (i)ϕ refers
to only the names bound inΓ , and (ii) Γ must be well-formed, i.e., ifΓ is of the
form Γ1, x : τ, Γ2 thenτ only refers to the names bound inΓ1 andx is not bound in
neitherΓ1 nor Γ2. See [10] for the formal definition of the well-formedness of type
environments and judgments. We freely permute bindings in type environments as long
as they are well-formed; for example, we do not distinguish betweenx :Un, y :Un and
y : Un, x : Un.

Typing The typing rules are shown in Figure 5. The ruleT-CAST says that the current
capability can be used for discharging obligations and increasing capabilities of the
name.T-CAST plays a role similar to the typing rule for cast processes in Gordon and
Jeffrey’s type system, but our cast is implicit and changes only the capabilities and
obligations, not the shape of types. This difference is important for automated type
inference. The other rules for messages are standard;T-PAIR is the standard rule for
dependent sum types (except for the use of indices).

In the rules for processes, the capabilities shown bycan be any capabilities. The
rules are also similar to those of Gordon and Jeffrey, except for the rulesT-OUT, T-IN,
T-NEWN, andT-CHK. In ruleT-OUT, we require that the type of messageM2 is public
as it can be received by any process, including the attacker. Similarly, in ruleT-IN we
require that the type of the received valuex is tainted, as it may come from any process.

Γ, x : τ ; ϕ ` x : τ
(T-VAR)

Γ ; ϕ1 ` M1 : τ1 Γ ; ϕ2 ` M2 : [M1/0]τ2

Γ ; ϕ1 + ϕ2 ` (M1, M2) : τ1 × τ2

(T-PAIR)

Γ ; ϕ1 ` M1 : τ1 Γ ; ϕ2 ` M2 : SKey(τ1)

Γ ; ϕ1 + ϕ2 ` {M1}M2 : N`(∅, ∅)
(T-SENC)

Γ ; ϕ1 ` M1 : τ Γ ; ϕ2 ` M2 : EKey(τ)

Γ ; ϕ1 + ϕ2 ` {|M1|}M2
: N`(∅, ∅)

(T-AENC)

Γ ; ϕ1 ` M : N`(ϕ2, ϕ3)

Γ ; ϕ1 + ϕ′2 + ϕ′3 ` M : N`(ϕ2 − ϕ′2, ϕ3 + ϕ′3)
(T-CAST)

Γ ; ∅ ` 0
(T-ZERO)

Γ ; ϕ1 ` P1 Γ ; ϕ2 ` P2

Γ ; ϕ1 + ϕ2 ` P1 |P2

(T-PAR)

Γ ; ∅ ` P

Γ ; ∅ ` ∗P
(T-REP)

Γ ; ϕ′ ` P ϕ′ ≤ ϕ

Γ ; ϕ ` P
(T-CSUB)

Γ ; ϕ1 ` M1 : N`(∅, ∅)
Γ ; ϕ2 ` M2 : τ Pub(τ)

Γ ; ϕ1 + ϕ2 ` M1!M2

(T-OUT)

Γ ; ϕ1 ` M : N`(∅, ∅)
Γ, x : τ ; ϕ2 ` P Taint(τ)

Γ ; ϕ1 + ϕ2 ` M?x.P
(T-IN)

Γ, x : SKey(τ); ϕ ` P

Γ ; ϕ ` (νsymx)P
(T-NEWSK)

Γ, x : N`(ϕ1, ∅), ϕ + {chk`(x, ϕ1)} ` P

Γ ; ϕ ` (νx)P
(T-NEWN)

Γ, k1 : EKey(τ), k2 : DKey(τ); ϕ ` P

Γ ; ϕ ` (νasymk1, k2)P
(T-NEWAK)

Γ ; ϕ1 ` M1 : N`(,) Γ ; ϕ2 ` M2 : SKey(τ) Γ, x : τ ; ϕ3 ` P

Γ ; ϕ1 + ϕ2 + ϕ3 ` decrypt M1 is {x}M2 .P
(T-SDEC)

Γ ; ϕ1 ` M1 : N`(,) Γ ; ϕ2 ` M2 : DKey(τ) Γ, x : τ ; ϕ3 ` P

Γ ; ϕ1 + ϕ2 + ϕ3 ` decrypt M1 is {|x|}M2−1 .P
(T-ADEC)

Γ ; ϕ1 ` M1 : N`(,) Γ ; ϕ2 ` M2 : N`(∅, ϕ5) Γ ; ϕ3 + ϕ4 + ϕ5 ` P

Γ ; ϕ1 + ϕ2 + ϕ3 + {chk`(M1, ϕ4)} ` check M1 is M2.P
(T-CHK)

Γ ; ϕ1 ` M : τ1 × τ2 Γ, y : τ1, z : [y/0]τ2; ϕ2 ` P

Γ ; ϕ1 + ϕ2 ` split M is (y, z).P
(T-SPLIT)

Γ ; ϕ1 ` M1 : τ1 × τ2 Γ ; ϕ2 ` M2 : τ1 Γ, z : [M2/0]τ2; ϕ3 ` P

Γ ; ϕ1 + ϕ2 + ϕ3 ` match M1 is (M2, z).P
(T-MATCH)

Γ ; ϕ + {end(M)} ` P

Γ ; ϕ ` beginM.P
(T-BEGIN) Γ ; ϕ + {end(M)} ` endM

(T-END)

Fig. 5. Typing Rules

This is different from Gordon and Jeffrey’s type system where the type of messages
sent to or received from public channels must beUn, and a subsumption rule allows
any value of a public type to be typed asUn and a value of typeUn to be typed as any
tainted type. In effect, our type system can be considered a restriction of Gordon and
Jeffrey’s such that the subsumption rule is only allowed for messages sent or received
via public channels. This point is important for automated type inference.

In rule T-NEWN, the obligationϕ1 is attached to the fresh namex and recorded in
the atomic check capability. Capabilities corresponding toϕ1 can then later be extracted
by a check operation if the obligation has been fulfilled. In ruleT-CHK, chk`(M1, ϕ4)
in the conclusion means that the capability to checkM1 must be present. If the check
succeeds, the capabilityϕ5 attached toM2 can be extracted and used inP . In addition,
the obligations attached toM2 must be empty, i.e. all obligations initially attached to the
name must have been fulfilled, and hence the capabilityϕ4 can be extracted and used
in P . The above mechanism for extracting capabilities through obligations is different
from Gordon and Jeffrey’s type system in a subtle but important way, and provides more
expressive power: see [10]. The remaining rules should be self-explanatory.

The following theorem guarantees the soundness of the type system. The proof is
given in the full version [10].

Theorem 1 (soundness).If x1 : Un, . . . , xm : Un; ∅ ` P , thenP is robustly safe.

Example 2.Recall the POSH protocol in Figure 2. Letτ beUn×NPub(∅, {end(0)}).
Then the process describing the behavior ofB (net?n. · · · in the last five lines) is typed
as the upper part of Figure 6. Here,Γ = net: Un, skB : EKey(τ), n : Un, msg: Un.

Γ ; ∅ ` msg: Un

Γ ; ∅ ` n : NPub(∅, ∅)
Γ ; {end(msg)} ` n : NPub(∅, {end(msg)})

Γ ; {end(msg)} ` (msg, n) : τ
· · ·

Γ ; {end(msg), chkPub(msg, ∅)} ` net!{|(msg, n)|}skB

Γ ; {chkPub(msg, ∅)} ` begin msg. · · ·
net: Un, skB : EKey(τ), n : Un; ∅ ` (νmsg) · · ·

net: Un, skB : EKey(τ); ∅ ` net?n. · · ·

Γ3; {end(m)} ` endm

Γ3; {chkPub(non, ∅)} ` check nonis non′. · · ·
Γ2, x : τ ; {chkPub(non, ∅)} ` split x is (m, non). · · ·

Γ2; {chkPub(non, ∅)} ` decrypt ctextis {|x|}pkB
−1 . · · ·

Fig. 6. Partial Typing of the POSH Protocol

Similarly, the partdecrypt ctextis {|x|}pkB
−1 . · · · of process A is typed as the lower

part of Figure 6. Here,Γ2 = net : Un, pkB : DKey(τ), non : Un, ctext : Un and
Γ3 = Γ2, x : τ, m :Un, non′ :NPub(∅, {end(m)}). LetP1 be the entire process of the
POSH protocol. It is typed bynet: Un; ∅ ` P1.

The SOPH and SOSH protocols in Figure 1 are typed in a similar manner. We show
here only key types:

SOPH
pkB : EKey(Un×NPub({end(0)}, ∅)), skB : DKey(Un×NPub({end(0)}, ∅))

SOSH
pkA : EKey(Un×NPr(∅, {end(0)})), skA : DKey(Un×NPr(∅, {end(0)}))
pkB : EKey(Un×NPr(∅, ∅)), skB : DKey(Un×NPr(∅, ∅))

Note that for POSH and SOPH the name qualifier must bePub, and only for the SOSH
protocol may it bePr. ut

4 Type Inference

We now briefly discuss type inference. For this we impose a minor restriction to the type
system, namely that in ruleT-PAIR, if M1 is not a name then the indice0 cannot occur
in τ2. Similarly, in ruleT-MATCH we require that index0 does not occur unlessM2

is a name. These restrictions prevent the size of types and capabilities from blowing
up. Given as input a processP with free namesx1, . . . , xn, the algorithm to decide
x1 : Un, . . . , xn : Un; ∅ ` P proceeds as follows:

1. Determine theshape of the type(or simple type) of each term via a standard unifi-
cation algorithm, and construct a template of a type derivation tree by introducing
qualifier and capability variables.

2. Generate a setC of constraints on qualifier and capability variables based on the
typing rules such thatC is satisfiable if and only ifx1 : Un, . . . , xn : Un; ∅ ` P .

3. Solve the qualifier constraints.
4. Transform the capability constraints to linear inequalities over the rational numbers.
5. Use linear programming to determine if the linear inequalities are satisfiable.

In step 1, we can assume that there are no consecutive applications ofT-CAST and
T-CSUB. Thus, the template of a type derivation tree can be uniquely determined: for
each process and message constructor there is an application of the rule matching the
constructor followed by at most one application ofT-CAST or T-CSUB.

At step 3 we have a set of constraintsC of the form:

{`i = `′i | i ∈ I} ∪ {(`′′j = Pub) ⇒ (ϕj = ∅) | j ∈ J} ∪ C1

whereI andJ are finite sets,̀ i, `
′
i, `

′′
j are qualifier variables or constants, andC1 is

a set of effect constraints (likeϕ1 ≤ ϕ2). Here, constraints on qualifiers come from
equality constraints on types and conditionsPub(τ) andTaint(τ). In particular,(`′′j =
Pub) ⇒ (ϕj = ∅) comes from the rule forTaint(N`′′j (ϕ,ϕj)). By obtaining the most
general unifierθ of the first set of constraints{`i = `′i | i ∈ I} we obtain the constraint
setC ′ ≡ {(θ`′′j = Pub) ⇒ (θϕj = ∅) | j ∈ J}∪θC1. Letγ1, . . . , γk be the remaining
qualifier variables, and letθ′ = [Pr/γ1, . . . ,Pr/γk]. ThenC is satisfiable if and only

if θ′C ′ is satisfiable. Thus, we obtain the setθ′C ′ of effect constraints that is satisfiable
if and only if x1 : Un, . . . , xn : Un; ∅ ` P holds.

Except for step 3, the above algorithm is almost the same as our previous work and
we refer the interested reader to [17, 18]. By a similar argument to that given in [18] we
can show that under the assumptions that the size of each begin/end assertion occurring
in the protocol is bounded by a constant and that the size of simple types is polynomial
in the size of the protocol, the type inference algorithm runs in polynomial time.

Example 3.Recall the POSH protocol in Figure 2. By the simple type inference in step
1 we get the following types for names:

non, non′ : N, pkB : DKey(N×N), . . .

By preparing qualifier and capability variables we get the following elaborated types
and constraints on those variables:

non: Nγ1(ξ0,o, ξ0,c), non′ : Nγ′1(ξ
′
0,o, ξ

′
0,c), . . .

Pub(Nγ1(ξ0,o, ξ0,c)) γ1 = γ′1 ξ6 ≤ ξ3 + ξ4 + ξ5

ξ2 ≥ ξ′0,o + (ξ5 − ξ′0,c) ξ7 ≥ ξ1 + ξ2 + ξ3 + {chkγ1(non, ξ4)} · · ·

Here, the constraintPub(Nγ1(ξ0,o, ξ0,c)) comes fromnet!non, and the other con-
straints fromcheck non is non. · · ·. By solving the qualifier constraints, we getγ1 =
γ′1 = Pub, . . ., and are left with constraints on capability variables. By computing (an
over-approximation of) the domain of each capability, we can reduce it to constraints on
linear inequalities. For example, by lettingξi = {chkPub(non, ξ4) 7→ xi, end(m) 7→
yi, . . .}, the last constraint is reduced to:

x7 ≥ x1 + x2 + x3 + 1 y7 ≥ y1 + y2 + y3 + 0 · · ·

5 Implementation and Experiments

We have implemented a protocol verifierSPICA2 based on the type system and in-
ference algorithm discussed above. The implementation is mostly based on the for-
malization in the paper, except for a few extensions such as sum types and private
channels to securely distribute initial keys. The implementation can be tested athttp:
//www.kb.ecei.tohoku.ac.jp/˜koba/spica2/ .

We have testedSPICA2 on several protocols with the results of the experiments
shown in Table 5. Experiments were conducted using a machine with a 3GHz CPU and
2GB of memory.

The descriptions of the protocols used in the experiments are available at the above
URL. POSH, SOPH, andSOSHare (spiCA-notations of) the protocols given in Figure 1.
GNSLis the generalized Needham-Schroeder-Lowe protocol [9]: see [10] for details.
Otway-Ree is Otway-Ree protocol using symmetric keys.Iso-two-pass is from
[15], and the remaining protocols are the Needham-Schroeder-Lowe protocol and its
variants, taken from the sample programs of Cryptyc [16] (but with type annotations
and casts removed).ns-flawed is the original flawed version,nsl-3 andnsl-7 are
3- and 7-message versions of Lowe’s fix, respectively. See [16] for the other three. As

the table shows, all the protocols have been correctly verified or rejected. Furthermore,
verification succeeded in less than a second except forGNSL. ForGNSL, the slow-down
is caused by the explosion of the number of atomic capabilities to be considered, which
blows up the number of linear inequalities obtained from capability constraints.

Protocols Typing Time (sec.)
POSH yes 0.001
SOPH yes 0.001
SOSH yes 0.001
GNSL yes 7.40
Otway-Ree yes 0.019
Iso-two-passyes 0.004

Protocols Typing Time (sec.)
ns-flawed no 0.007
nsl-3 yes 0.015
nsl-7 yes 0.049
nsl-optimized yes 0.012
nsl-with-secret yes 0.023
nsl-with-secret-optimizedyes 0.016

Table 1.Experimental results

6 Extensions

In this section, we hint on how to modify our type system and type inference algorithm
to deal with other features. Formalization and implementation of the extensions are left
for future work.

Our type system can be easily adopted to deal with non-injective correspondence [13],
which allows multiple end-events to be matched by a single begin-event. It suffices to
relax the typing rules, for example, by changing the rules for begin- and end-events to:

Γ ; ϕ + {end(M) 7→ r} ` P r > 0
Γ ;ϕ ` beginM.P

r > 0
Γ ; ϕ + {end(M) 7→ r} ` endM

Fournet et al. [12] generalized begin- and end-events by allowing predicates to be
defined by Datalog programs. For example, the process:

assumeemployee(a); expectcanRead(a, handbook)

is safe in the presence of the clause “canRead(X,handbook) :- employee(X)”. Here, the
primitivesassumeandexpectare like non-injective versions ofbeginandend. A simi-
lar type system can be obtained by extending our capabilities to mappings from ground
atomic formulas to rational numbers (whereϕ(L) > 0 meansL holds), and introduc-
ing rules for assume and expect similar to the rules above for begin and end-events. To
handle clauses like “canRead(X,handbook) :- employee(X)”, we can add the following
rule:
Γ ; ϕ + {L 7→ r} ` P There is an (instance of) clauseL : − L1, . . . , Lk

r ≤ ϕ(Li) for eachi ∈ {1, . . . , k}
Γ ; ϕ ` P

This allows us to derive a capability forL whenever there are capabilities forL1, . . . , Lk.
To reduce capability constraints to linear programming problems, it suffices to extend

the algorithm to obtain the domain of each effect [18], taking clauses into account (more
precisely, if there is a clauseL : −L1, . . . , Lk andθL1, . . . , θLk are in the domain of
ϕ, we addθL to the domain ofϕ).

To deal with trust and witness in [15], we need to mix type environments and capa-
bilities, so that type environments can also be attached to names and passed around. The
resulting type system is rather complex, so that we leave the details to another paper.

7 Related Work

The present work extends two lines of previous work: Gordon and Jeffrey’s type sys-
tems for authenticity [14, 15], and Kikuchi and Kobayashi’s work to enable type infer-
ence for symmetric cryptographic protocols [18]. In our opinion the extension is non-
trivial, requiring the generalization of name types and a redesign of the type system.
This has yielded a fully-automated and efficient protocol verifier. As for the expressive
power, the fragment of Gordon and Jeffrey’s type system (subject to minor restrictions)
without trust and witness can be easily embedded into our type system. On the other
hand, thanks to the uniform treatment of name types in terms of capabilities and obliga-
tions, our type system can express protocols that are not typable in Gordon and Jeffrey’s
type system, like the GNSL multi-party protocol [9]. See [10] for more details.

Gordon et al. [3, 4] extended their work to verify source code-level implementation
of cryptographic protocols by using refinement types. Their type systems still require
refinement type annotations. We plan to extend the ideas of the present work to enable
partial type inference for their type system. Bugliesi, Focardi, and Maffei [6, 11, 7] have
proposed a protocol verification method that is closely related to Gordon and Jeffrey’s
type systems. They [11] developed an algorithm for automatically inferringtags(which
roughly correspond to Gordon and Jeffrey’s types in [14, 15]). Their inference algorithm
is based on exhaustive search of taggings by backtracking, hence our type inference
would be more efficient. As in Gordon and Jeffrey type system, their tagging and typing
system is specialized for the typical usage of nonces in two-party protocols, and appears
to be inapplicable to multi-party protocols like GNSL.

There are automated protocol verification tools based on other approaches, such as
ProVerif [5] and Scyther [8]. Advantages of our type-based approach are: (i) it allows
modular verification of protocols6; (ii) it sets up a basis for studies of partial or full
type inference for more advanced type systems for protocol verification [4] (for an
evidence, recall Section 6); and (iii) upon successful verification, it generates types as a
certificate, which explains why the protocol is safe, and can be independently checked
by other type-based verifiers [15, 4]. On the other hand, ProVerif [5] and Scyther [8]
have an advantage that they can generate an attack scenario given a flawed protocol.
Thus, we think that our type-based tool is complementary to existing tools.

6 Although the current implementation ofSPICA2 only supports whole protocol analysis, it
is easy to extend it to support partial type annotations to enable modular verification. For
that purpose, it suffices to allow bound variables to be annotated with types, and generate
the corresponding constraints during type inference. For example, for a type-annotated input
M?(x : τ1).P , we just need to add the subtype constraintτ1 ≤ τ to ruleT-IN.

References

1. Abadi, M.: Secrecy by typing in security protocols. JACM 46(5), 749–786 (1999)
2. Abadi, M., Gordon, A.D.: A Calculus for Cryptographic Protocols: The Spi Calculus. Infor-

mation and Computation 148(1), 1–70 (January 1999)
3. Bengtson, J., Bhargavan, K., Fournet, C., Gordon, A.D., Maffeis, S.: Refinement types for

secure implementations. In: Proceedings of the 21st IEEE Computer Security Foundations
Symposium (CSF 2008). pp. 17–32 (2008)

4. Bhargavan, K., Fournet, C., Gordon, A.D.: Modular verification of security protocol code by
typing. In: Proceedings of POPL 2010. pp. 445–456 (2010)

5. Blanchet, B.: From Secrecy to Authenticity in Security Protocols. In: 9th International Static
Analysis Symposium (SAS’02). LNCS, vol. 2477, pp. 342–359. Springer-Verlag (2002)

6. Bugliesi, M., Focardi, R., Maffei, M.: Analysis of typed analyses of authentication protocols.
In: 18th IEEE Computer Security Foundations Workshop, (CSFW-18 2005). pp. 112–125
(2005)

7. Bugliesi, M., Focardi, R., Maffei, M.: Dynamic types for authentication. Journal of Computer
Security 15(6), 563–617 (2007)

8. Cremers, C.J.F.: Unbounded verification, falsification, and characterization of security pro-
tocols by pattern refinement. In: Proceedings of ACM Conference on Computer and Com-
munications Security (CCS 2008). pp. 119–128 (2008)

9. Cremers, C.J.F., Mauw, S.: A family of multi-party authentication protocols - extended ab-
stract. In: Proceedings of WISSEC’06 (2006)

10. Dahl, M., Kobayashi, N., Sun, Y., Ḧuttel, H.: Type-based automated verification of authen-
ticity in asymmetric cryptographic protocols. Full version, available athttp://www.kb.
ecei.tohoku.ac.jp/˜koba/papers/protocol-full.pdf (2011)

11. Focardi, R., Maffei, M., Placella, F.: Inferring authentication tags. In: Proceedings of the
Workshop on Issues in the Theory of Security (WITS 2005). pp. 41–49 (2005)

12. Fournet, C., Gordon, A.D., Maffeis, S.: A type discipline for authorization policies. ACM
Trans. Prog. Lang. Syst. 29(5) (2007)

13. Gordon, A.D., Jeffrey, A.: Typing one-to-one and one-to-many correspondences in secu-
rity protocols. In: Software Security – Theories and Systems, Mext-NSF-JSPS International
Symposium (ISSS 2002). LNCS, vol. 2609, pp. 263–282. Springer-Verlag (2002)

14. Gordon, A.D., Jeffrey, A.: Authenticity by typing for security protocols. Journal of Computer
Security 11(4), 451–520 (2003)

15. Gordon, A.D., Jeffrey, A.: Types and effects for asymmetric cryptographic protocols. Journal
of Computer Security 12(3-4), 435–483 (2004)

16. Haack, C., Jeffrey, A.: Cryptyc.http://www.cryptyc.org/ (2004)
17. Kikuchi, D., Kobayashi, N.: Type-based verification of correspondence assertions for com-

munication protocols. In: Proceedings of APLAS 2007. LNCS, vol. 4807, pp. 191–205.
Springer-Verlag (2007)

18. Kikuchi, D., Kobayashi, N.: Type-based automated verification of authenticity in crypto-
graphic protocols. In: Proceedings of ESOP 2009. LNCS, vol. 5502, pp. 222–236. Springer-
Verlag (2009)

19. Pierce, B., Sangiorgi, D.: Typing and subtyping for mobile processes. Mathematical Struc-
tures in Computer Science 6(5), 409–454 (1996)

20. Woo, T.Y., Lam, S.S.: A semantic model for authentication protocols. In: RSP: IEEE Com-
puter Society Symposium on Research in Security and Privacy. pp. 178–193 (1993)

