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Abstract: We introduce a logic L≡ for a subset of the Mobile Resources (MR) calculus [6] where name

restriction is removed. The calculus is tailored for expressing and analyzing the properties of systems

containing mobile, possibly nested, computing devices that may again have internal resources which are not

copyable nor modifiable per se. We provide the semantics for L≡ and compare the equivalence =L≡ on

MR processes (induced by L≡ ) with the MR structural congruence in order to show the logic’s power to

describe internal structures of processes. We also present a logic L∼ based on the transition rules of the

calculus which is similar to HML [8] and closely releated to bisimulation. We show that L≡ is strong enough

to simulate L∼ through an encoding function ϕ. Finally, we present a sound and complete model checking

algorithm for our subset of the MR calculus, without replication and L≡ without composition adjunct.

1 Introduction

Mobile computing resources abound in today’s
society. Examples are smart cards used in SIM-
cards or credit cards. These resources move from
card issuers to card holders and in and out of
mobile phones or ATMs. The ability to reason
about correctness of the behaviour of systems
containing such resources has been the inspira-
tion to the development of a calculus of mobile
resources (MR). The purpose of the calculus is to
be able to design and analyze systems containing
nested, mobile computing resources residing in
named locations. Furthermore, a formal frame-
work to express and prove properties that may
depend on the assumption that such resources
are neither copyable nor arbitrarily modifiable
has been devised. These assumptions are crucial
for the security of systems based on smart cards
as trusted computing resources.

Two strategies for determining correctness of
a model are common: behavioural equivalence
of an implementation and a specification using a
bisimulation or model checking a process against
a set of properties described in a logic. Each
has certain benefits. Since the MR calculus mod-
els mobility through spatial configuration, a logic
has been designed to describe the precise spatial
structure of a process expression. With our logic
L≡ it is possible to express desirable properties
and assert that these properties hold for a given
model expressed in MR. Properties such as: “two
parallel processes can move a subprocess from
one process to the other” may be expressed and
asserted. Furthermore, we show that L≡ which is
based on a structural congruence may indeed also

express behavioural properties in form of bisim-
ulation.
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2 The Mobile Resources Calculus

In the following Section we introduce the syntax and semantics of a reduced version of the Mobile
Resources calculus; in the rest of the article we use MR to refer to this reduced version. The Mobile
Resources calculus is inspired by the Mobile Ambient calculus [2] and has a simular concept of slots,
resulting in the syntax shown in Figure 1.

As shown in Section 3 we have chosen not to include name restriction in the logic and hence MR
is modified in the same way. Notice that since we do not add new or modify existing elements, MR
processes are a subset of processes of the original Mobile Resources calculus. In Section 8 we briefly
discuss how name restriction could be included in the logic and what would be affected.

2.1 The Syntax

We define an infinite countable set of names N and a set of co-names N = {n|n ∈ N} to use as
names in actions and directions. From N we use n and m to denote single elements and ñ and m̃ to
denote subsets. The letter γ denotes a sequence of names from N ∗, with ε being the empty sequence
and δ a sequence with at least one element (N+). γ and δ are called directions. Let α range over
the set of actions A = N ∪N . An action α synchronizes with the corresponding co-action α like in
CCS [11]. Also, let P be the set of process expressions ranged over by P and Q.

P,Q ::= 0 (nil)
| λ.P (prefix)
| P ‖ Q (parallel composition)
| !P (replication)
| ñbrcm (slot)

λ ::= γα (action)
| δ . δ′ (move)
| \m (deletion)

r ::= • (empty slot)
| P (occupied slot)

Figure 1: MR syntax

The constructs nil, prefix and parallel composition are inherited from CCS-like calculi and are
used at usual. The remaining constructs are added to express the mobile behaviour of processes. The
prefix action captures directed actions (γ 6= ε) and actions (γ = ε). Actions can synchronize with
actions in the same slot or with directed actions from outer slots. The prefix move is a directed move
of resources residing at any accessible sub-location δ relative to the move action. A slot is identified
by a set of names ñ and an additional deletion name m. A slot may be deleted by performing the
\m action from a process parallel to the slot. Processes within slots are referred to as resources.
The replication action provides as many parallel instances of the process as required and adds to
the calculus the power of recursive definitions.

Since slots may contain other slots we denote the spatial tree structure formed as the slot hierarchy
of a process expression. We say that nested slots are lower in the hierarchy than the slot in which
they are contained.

2.1.1 Contexts

The context constructs of the calculus are as defined in Figure 2. Contexts C are, as usual, process
terms with a single hole (−). We write C (P ) for the insertion of a process P in the hole of context
C , yielding a new process.

Cε ::= (−)
Cnγ ::= ñbCγ‖P cm (where n ∈ ñ)
Dγn ::= Cγ(ñb(−)cm) (where n ∈ ñ)

E ::= (−) | ñbE cm | E ‖P

Figure 2: Context syntax

The context Cε is simply a flat context with a hole whereas Cnγ is a context with a hole which
resides under path γ in the slot n. This context may have parallel processes at all levels. Dγn is
used for the special case where the hole is the only content of the slot n located under a path γ.
Evaluation contexts E are contexts whose hole does not appear under prefix or replication.
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2.1.2 Structural Congruence

An equivalence relation S on P is a congruence if it is preserved by all contexts, i.e. S is a congruence
if P S Q implies C (P ) S C (Q) for all contexts C . The structural congruence relation ≡ is defined
as the least congruence on P which satisfies the rules in Figure 3. Figure 4 lists derived properties
caused by ≡ being a congruence.

E1) P ‖ 0 ≡ P E2) !P ≡ P ‖!P
E3) P ‖ Q ≡ Q ‖ P E4) (P ‖ P ′) ‖ P ′′ ≡ P ‖ (P ′ ‖ P ′′)

Figure 3: Structural equivalence

Since we have no name restriction and hence no alpha conversion, structural congruence can
informally be said to hold for two processes if one can be derived from the other just by simple
rearrangement of parts without any computational difference. By definition we have E5 from which
E6 and E7 follows. E8 and E9 are easily shown by induction on the depth of the inference of P ≡ Q.

E5) E (P ) ≡ E (Q), if P ≡ Q E6) P ≡ Q =⇒ ∀R : P ‖ R ≡ Q ‖ R
E7) P ≡ Q ⇐⇒ ñbP cm ≡ ñbQcm E8) P ≡ Q ∧ P ≡ λ.P ′ =⇒ ∃Q′ : Q ≡ λ.Q′ ∧ P ′ ≡ Q′
E9) P ≡ Q ∧ P ≡ P1 ‖ P2 =⇒ ∃Q1, Q2 : Q ≡ Q1 ‖ Q2 ∧ P1 ≡ Q1 ∧ P2 ≡ Q2

Figure 4: Derived properties of structural congruence

2.2 The Semantics

Two semantics for MR are provided in [6]. One based on reduction rules and one based on SOS
transition rules and a labelled transition system. As shown in [6] these semantics coincide for τ
transitions. The reduction rules only express how a process can evolve by internal actions, whereas
the SOS transition rules describe how the process may interact with its context. An interesting
difference between MR and CCS is the fact that a three-way synchronization is achieved among the
source, the destination and the issuing process when moving a resource.

2.2.1 Reduction Semantics

The relation ↘ is defined as the least binary relation on P satisfying the rules of Figure 5 closed
under ≡, as defined in Figure 3, and under all evaluation contexts E .

γα.P ‖ Cγ(α.Q)↘ P ‖ Cγ(Q)
γδ1 . γδ2.P ‖ Cγ(Dδ1(Q) ‖ Dδ2(•))↘ P ‖ Cγ(Dδ1(•) ‖ Dδ2(Q))
\m.P ‖ ñbrcm ↘ P

Figure 5: Reduction rules

The first rule describes standard CCS synchronization of action α and co-action α. Additionally
the context Cγ express that γα synchronizes with an α action found under path γ. The second rule
shows how resources may be moved under contexts. Moves are done by a third party process and
not by a resource itself, contrary to the approach in the Mobile Ambient calculus. Moves must be
performed by a process located higher in the slot hierarchy than the process being moved. The third
rule defines deletion of slots.

2.2.2 Transition Semantics

The semantics of MR is defined in terms of SOS transition rules and labelled transition semantics
given in Figures 7 and 8 respectively. Figure 6 summarizes the observable labels of the labelled
semantics with some of them requiring an explaination: in the exit (respectively enter) label the δ
is the path under which the slot is located and P the process leaving (respectively entering) the slot.
The co-action for exit (respectively enter) is take (respectively give) where δ is the path of the slot
where the process P is leaving from (respectively entering to).
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π ::= β

| δ . <P> (exit)
| <P> . δ (give)

β ::= τ | λ | δα
| δ . δ′ (comove)
| (P ) . δ (enter)
| δ . (P ) (take)

Figure 6: Observable labels in the semantics

In Figure 9 we provide the different ways three-way synchronization can be constructed and
the example in Section A.6 shows a complete derivation of such a synchronization. The order of
synchronization is nondeterministic, thus any of the derivations from Figure 9 may occur when
evaluating a process. Any two processes may initiate the synchronization, resulting in a co-action
matching the third process and finally evaluating to a τ (sync) action. The remaining rules are
evaluated as usual.

(prefix )
λ.P

λ−→ P

(rep)
P ‖!P π−→ P ′

!P π−→ P ′

(sync)
P1

π−→ P ′1 P2
π−→ P ′2

P1 ‖ P2
τ−→ P ′1 ‖ P ′2

(par)
P

π−→ P ′

P ‖ Q π−→ P ′ ‖ Q

(sym)
P ‖ Q π−→ P ′ ‖ Q
Q ‖ P π−→ Q ‖ P ′

Figure 7: Standard transition rules

(exit)
ñbP cm

n.<P>−−−−→ ñb•cm
n ∈ ñ

(enter)
ñb•cm

(P ).n−−−−→ ñbP cm
n ∈ ñ

(give)
P1

δ1.<Q>−−−−→ P ′1 P2
δ1.δ2−−−→ P ′2

P1 ‖ P2
<Q>.δ2−−−−→ P ′1 ‖ P ′2

(take)
P2

δ1.δ2−−−→ P ′2 P1
(Q).δ2−−−−→ P ′1

P1 ‖ P2
δ1.(Q)−−−−→ P ′1 ‖ P ′2

(comove)
P1

δ1.<Q>−−−−→ P ′1 P2
(Q).δ2−−−−→ P ′2

P1 ‖ P2
δ1.δ2−−−→ (P ′1 ‖ P ′2)

(nesting)
P

π−→ P ′

ñbP cm
n·(π)−−−→ ñbP ′cm

n ∈ ñ

(delete)
ñbrcm

\m−−→ 0

Figure 8: Transition rules for resources and mobility

An important detail lies within the n · ( ) operation used in the nesting rule. The operation
dictates how actions happening inside a slot is viewed by the outside world and is defined by the
following rules:

n · (τ) = τ n · (γα) = nγα n · (δ1 . δ) = nδ1 . nδ2
n · ((P ) . δ) = (P ) . nδ n · ((ñ)δ . <P >) = (ñ)nδ . <P >

By not being defined for all labels from π the operation restricts some actions from being visible
from outside a slot, e.g. a directed action inside a slot is not visible from the outside since n · (δα)
is not defined.

Another detail is the use of π in the sync rule. Depending on the label from π we have that π is:

action δα = δα coaction move δ1 . δ2 = δ1 . δ2 comove

exit δ . <P > = δ . (P ) take enter (P ) . δ = <P > . δ give
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Figure 9: All possible three way synchronizations of MR processes

So for example for two processes nba.P c na−−→ nbP c and na.Q na−−→ Q when put together the sync
rule gives that nba.P c ‖ na.Q τ−→ nbP c ‖ Q.

2.2.3 Strong Bisimulation

If we use the labels from Figure 6 for the bisimulation, we end up with a simulation that is too
strong. As an example for processes P and Q:

P : nba.ac n.<a.a>−−−−−→ nb•c
Q: nba ‖ ac n.<a ‖ a>−−−−−−→ nb•c

Although P and Q should be bisimular, they are not since P can do a transition that Q cannot
(and Q can do a transition that P cannot). For this reason the exit and give actions are replaced
with families of actions that do not say anything about the process leaving a slot. We have:

give P
.δ(Dδ)−−−−→ (P ′ ‖ Dδ(Q)) if P

<Q>.δ−−−−→ P ′

exit P
(Cγ)δ′.(Dδ)−−−−−−−−→ (Cγ(P ′) ‖ Dδ(Q)) if P

δ′.<Q>−−−−→ P ′

Notice that in the exit action δ and γ are chosen freely: δ′ denotes the path of the slot within P
from where Q is removed; δ denotes the path of the slot where process Q is moved to and γ is the
path to the slot in which P resides. The actions in the bisimulation becomes:

ψ ::= β | .δ(Dδ) | (Cγ)δ′ . (Dδ)

From [6] we have the following definition of ∼ and the result that it is a congruence:

Definition 1. A simulation is a binary relation S over P such that whenever (P,Q) ∈ S:

if P a−→ P ′ then there exists Q′ such that Q a−→ Q′ and (P ′, Q′) ∈ S

Where a is an element from the set of labels generated by ψ. S is a bisimulation if S and
S−1 = {(Q,P )|(P,Q) ∈ S} are simulations. We write P ∼ Q if there exists a bisimulation S such
that (P,Q) ∈ S.

2.2.4 Barbed Bisimulation

In terms of observable communication, barbs are defined as the set of (non-directed) actions in λ
that a process P offers to the surrounding environment. This definition excludes observation of
directed actions and move actions. As in [6] we define barbs as:
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P ↓ n if P ≡ α.P ′ ‖ Q where α ∈ {n, n̄}

In this case n is the set of actions available from the process P to the surrounding environment.

Definition 2. A barbed bisimulation is a symmetric relation S on P such that whenever P S Q
holds:

P ↓ n implies Q ↓ n
P ↘ P ′ then there exists Q′ such that Q↘ Q′ and P ′ S Q′

Barbed bisimulation congruence ∼b is the largest congruence that is a barbed bisimulation.

In [6] it is shown that ∼ = ∼b and argued that it is easier to show bisimularity than to show
barbed congruence of two MR processes.

3 A Logic for MR

Our logic L≡ is inspired by the logic for the Mobile Ambient calculus [1]. This becomes apparent
in the definition of the connectives, which enables us to express properties of mobility as evolution
of spatial configurations over time. To enable the logic to express the desired properties of spatial
configurations, the design of the satisfaction relation is based on structural congruence and not
transition rules as is the case of HML and the logic L∼ we present in Section 5.1. As a result, L≡ is
able to seperate terms on the basis of their internal structure, even though their behaviours are the
same, as opposed to L∼ and HML which can only seperate terms that have different behaviours.

3.1 The Syntax of L≡
The connectives can be devided into three categories: first order predicate logic, spatial and temporal
constructs, where spatial express structure and temporal express evolution in time. The formulae of
the logic are defined by the following syntax:

A,B ::= tt | ¬A | A ∨B | ∀x.A first order predicate logic
0 | η̃bAc | η̃b•c | A1 ‖ A2 | ◊A | A@η̃ | A ‖.B spatial
3A | λ.A temporal

The symbol η denotes a member and η̃ denotes a subset of the set Λ ∪ N where Λ is the set of
variables and N the set of names; we assume that Λ ∩ N = ∅. The prefix rule uses the symbol λ
which ranges over the prefix actions of the calculus. Each element γ, δ and m from λ may consist
of members from Λ ∪N and α from Λ ∪ A.

3.1.1 Precedence

Connectives only bind to the connectives adjacent to themselves. The precedence hierarchy is as
follows, in order of appearance (top to bottom), such that unary operators bind the strongest and
universal quantification binds the least:

λ,3, ◊,2,◊ : unary operators bind right s.t. λ ◊A should be read λ( ◊A)
‖. is stronger than @ : A ‖.B@n should be read (A ‖.B)@n
∨ is weaker than ∧ : A ∨B ∧ C should be read A ∨ (B ∧ C)

‖ : seperates terms of expression
∀x : quantifies entire expressions s.t. ∀x.A should be read (∀x.A)

To change the scope of a given connective, parentheses can be inserted in the formula, e.g.
A ∨ (B ‖ C) ∨D instead of A ∨B ‖ C ∨D.
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3.2 Satisfaction

The definition of satisfaction for closed formulae1 of L≡ is given in Figure 10. The temporal con-
nective sometime (3) is defined in terms of the transitive and reflective closure ↘∗ of the reduction
relation↘ in Section 2.2.1. Defining 3 in terms of the reduction rules is preferred over the transition
rules because, when using transition rules, a process containing an empty slot without the possibility
of restriction may satisfy any property given the infinite possibilities of processes which may enter.
Using the reduction rules allows expressions about how the process evolves on its own. Informally
we have that a process satisfying 3A must at some point in the future reduce to a state where A is
satisfied.

true P |= tt , true for all processes P
negation P |= ¬A , ¬(P |= A)

disjunction P |= A ∨B , P |= A ∨ P |= B

void P |= 0 , P ≡ 0
location P |= m̃bAc , ∃P ′ s.t. P ≡ ñbP ′cn′ with m̃ ⊆ ñ and P ′ |= A for some n′

empty location P |= m̃b•c , P ≡ ñb•cn′ with m̃ ⊆ ñ for some n′

composition P |= A1 ‖ A2 , ∃P1, P2 s.t. P ≡ P1 ‖ P2 and P1 |= A1 ∧ P2 |= A2

sometime modality P |= 3A , ∃P ′ s.t. P ↘∗ P
′ and P ′ |= A

somewhere modality P |= ◊A , ∃P ′ s.t. P ↓∗ P ′ and P ′ |= A

location adjunct P |= A@m̃ , ∃P ′ s.t. P ′ ≡ ñbP cn′ with m̃ ⊆ ñ and P ′ |= A for some n′

composition adjunct P |= A ‖.B , ∀R s.t. R |= A then R ‖ P |= B

prefix P |= λ.A , ∃P ′ s.t. P ≡ λ.P ′ and P ′ |= A

universal P |= ∀x.A , P |= A{m/x} ∀m ∈ N+ ∪N

Figure 10: The satisfaction relation is defined on closed processes and closed formulae

The slot connective is used to express structural properties of the process, but to allow for some
flexisiblity in this structure the slot names in the logic only has to be a subset of the slot names in the
process: the process P = {a, b, c}b0cd satisfies the formula A = {a, c}bttc and all (non-empty) slots
satisfies ∅bttc. For similar reasons, slots in the logic have no delete name. The somewhere connective
is defined (as in [2]) in terms of the transitive and reflexive closure ↓∗ of ↓ and means that somewhere
in the slot hierarchy there is a process that satisfies A. The location connective specifies that the
process P is a slot named ñ containing a process P ′ which satisfies A. The empty location connective
denotes that a process P contains an empty slot ñ. The location adjunct connective specifies that if
the process P is placed in a slot ñ it will satisfy A. The composition adjunct is a security connective
inspired by [2] used to assert a property B of a process P in parallel with any process R satisfying
A. universal adds the power of quantification over variables where the function A{m/x} returns
the formula A where all occurrences of variable x is initialized to m, where m ∈ N+ ∪ N . If the
initialization of x to m results in a syntactic unsound formula, the formula ¬tt is returned in its
place.

3.2.1 Derived Connectives

Figure 11, 12 and the following section defines and describes some useful connectives, which may be
derived from the existing logic. All are derivatives found in standard logic. The everytime connective
states that A holds for the process P in its current state and will continue to do so always.

3.2.2 Introducing The Somewhere Connective

As an alternative to introducing the ◊-connective through a definition (see Figure 10) our logic is
infact strong enough to derive the connective through encoding of existing connectives. To achieve
this derivation, we need some notational shorthand. We introduce γnbAc as defined in Figure 12
which express the existence of a slot in any context. We can then use the existential operator from
Figure 11 to construct the formula ∃δ.δbAc ∨A, which expresses the same as the current definition
of the ◊-connective. Even though this definition is decidable, the complexity is exponential.

1In a closed formula there are no free variables, i.e. all variables in the formula is bound by a quantifier.
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false P |= ff , ¬tt
conjunction P |= A ∧B , ¬(¬A ∨ ¬B)
implication P |= A =⇒ B , ¬A ∨B

logical equivalence P |= A ⇐⇒ B , (A =⇒ B) ∧ (B =⇒ A)
everytime P |= 2A , ¬3¬A

everywhere P |= ◊A , ¬ ◊¬A
existential P |= ∃x.A , ¬∀x.¬A

Figure 11: Derived connectives

directed location P |= γnbAc , n1b. . . nkbnbAc ‖ ttc ‖ tt . . .c where γ = n1 . . . nk

directed location adjunction P |= A@γn , A@n@nk . . .@n1 where γ = n1 . . . nk

Figure 12: Notational shorthand

3.2.3 A Note on The Sometime and Somewhere Connectives

Although we refer to the sometime (3) connective as a temporal connective, it would be more accu-
rate to refer to it as an alethic modality according to the definition given in [7]. Both temporal and
alethic logics go beyond extensional logics and talk about other states than the current. But where
alethic logics only express possibility and necessity in the future, temporal logics can express both
future and past. For that reason it is more accurate to refer to 3 as being an alethic modality with
the special case that the reachability relation is defined over time.

Our logic and the 3 connective fits in the general theory of alethic logic; the aim of the rest of
this Section is to show this. As in all modal logics we need a model M in which we can evaluate
logical expressions. By the definitions in [7] such a model consists of: 1) a set of states W ; 2) a
reachability relation R defined over W ×W ; and 3) a truth mapping ϕ : W × L 7→ {tt, ff} where L
is the set of possible formulae in the logic. Evaluation of an expression A ∈ L in the model M is
based on the state v ∈W and we write M |=v A if ϕ(v,A) = tt. In classic logics we only talk about
one state and hence we can omit W in the definition of ϕ. However, in alethic logics the state is
important for the 3 and 2 connectives such that:

M |=v 3A , ∃u ∈W s.t. M |=u A where (v, u) ∈ R
M |=v 2A , ∀u ∈W s.t. M |=u A where (v, u) ∈ R

Mapping this to our logic we have L to be the formulae in L≡; W = P; R is the reflexive and
transitive closure of ↘ and ϕ is the satisfaction relation. Since M is fixed we alter the syntax and
write P |= A instead of M |=P A.

The somewhere ( ◊) connective can be mapped in a similar way using the reflexive and transitive
closure of ↓ for R.

3.3 An Example

The setting of the example is a person wanting to withdraw money from an ATM. The person is
initially equipped with two pockets, one being empty and the other containing a credit card. The
ATM initially contains an empty slot for inserting a credit card, an empty tray for delivering the
money to the person and a slot containing the bank’s money. When the ATM and the person are
done interacting, the ATM no longer contains money and the person has a credit card in one pocket
and money in the other pocket. The following processes model involved objects in a withdrawal.
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Cash , pay.0
Card , validate.0
ATM , cardslotb•c ‖ moneytrayb•c ‖ moneysupplybCashc ‖ pin

.cardslot validate.moneysupply . moneytray.ready.0
Pockets , pocketbleftbCardc ‖ rightb•cc
Person , Pockets ‖ pocket left . cardslot.pin.ready

.moneytray . pocket right.cardslot . pocket left.0
Withdraw , Person ‖ ATM

Logical properties of the processes are defined as follows: Success is the property of a person
having both pockets full (money in one and credit card in the other). Money present describes the
property that somewhere in the system, money must be present i.e. withdrawal does not cause loss
of money. Personready states the property of a person is willing to insert his valid credit card into
the ATM, enter a PIN-number and thereafter wait for the money. ATMready has two requirements;
firstly the ATM has an initial state which must have an empty cardslot, an empty moneytray and
be willing to accept a PIN-number. Secondly, an ATM must satisfy the property of having cash
in its moneytray and be willing to output ready when put in parallel with any process satisfying
Personready.

Success , 3(pocket leftbttc ∧ pocket rightbttc)
Money present , 2 ◊pay.tt
Personready , ∃validcard : pocket validcard . cardslot.pin.ready.tt
ATMready , cardslotb•c ‖ moneytrayb•c ‖ pin.tt

∧
(
Personready ‖.3moneytraybpay.ttc ‖ ready

)
Now based on the satisfaction relation in Figure 10 we can assert whether the specified processes

satisfy the logical properties or not.

Withdraw |= Success
Withdraw |= Moneypressent
Person |= Personready

ATM |= ATMready

Thus we have that the withdrawal process actually satisfies the properties of a successful trans-
action and that transactions do not cause loss of money. Likewise our instance of a person process
satisfies the properties of Personready which is the requirement of a person who wishes to make a
withdrawal. Finally, the ATM process satisfies the ATMready property, guaranteeing that in parallel
with a Person process it will result in a successful withdrawal.

4 Equivalence between =L≡ and ≡
In this section we show that the equivalence imposed by the logic L≡ coincides with the equivalence
imposed by structural congruence. Since structural congruence is a very strong relation, this result
may be unsuspected. However, because the satisfaction rules of the logic is based heavily upon
structural congruence and because the logic can mimic a large part of the calculus constructions,
this is not surprising.

The main result (Theorem 6) in this section is supported by two Lemmas. Lemma 4 shows the
trivial result that structural congruence implies logical equivalence. Lemma 5 shows that if two
processes are not structural congruent, then there exists a formula in the logic that is satisfied by
one of them but not the other and hence they are also not logically equivalent.

The logic equivalence =L≡ for L≡ is an equivalence relation over P ×P and is defined as follows.

Definition 3. We write P =L≡ Q if and only if P and Q satisfy exactly the same formulae, i.e. for
all formulae A ∈ L≡:

if P =L≡ Q and P |= A then Q |= A
if P =L≡ Q and Q |= A then P |= A

Lemma 4. If P ≡ Q then P =L≡ Q
9



Proof. Detailed proof is given in Section A.1.
This Lemma can be stated in another way, namely: if P ≡ Q then P and Q satisfies exactly

the same formulae according to Definition 3. By the symmetry of ≡, i.e. P ≡ Q ⇔ Q ≡ P , it is
sufficient to only consider the case where P |= A. We must prove the Lemma for all formulae in the
logic and so the proof is by structural induction on the formula. For the inductive hypothesis, we
assume that for processes R,S if R ≡ S and R |= B then S |= B and in the inductive step we show
that the equivalence is preserved by all structures in the logic.

Lemma 5. If P 6≡ Q then P 6=L≡ Q.

Proof. Detailed proof is given in Section A.2.
To prove Lemma 5 we show, without loss of generality, that for two processes P and Q, where

P 6≡ Q, there exists a formula A that distinguishes P and Q, i.e. P |= A and Q 6|= A. Since we
must show this for any two processes, the proof is by structural induction on the processes. For
the inductive hypothesis, we assume that for processes R,S if R 6≡ S then there exists a formula B
distinguishing them and show that this is preserved in the inductive step.

Theorem 6. =L≡ and ≡ coincide.

Proof. Follows directly by Lemma 4 and Lemma 5.

5 Relation between =L≡ and ∼
We now show the connection between =L≡ and ∼. Theorem 6 shows that =L≡ = ≡ and hence it is
easy to see that we cannot have =L≡ = ∼.

Following the approach of [13] we look for a characterization of bisimularity in terms of =L≡ .
However, we want a characterization of strong bisimularity from Section 2.2.3 contrary to what is
done in [13] where the logic is compared to an intensional bisimilarity based on the reduction rules.
We characterize strong bisimulation since [6] shows that this is equivalent to barbed congruence
(Section 2.2.4) which is a preferred equivalence relation in ambient-based calculi.

In order to make the characterization more clear we first define a new HML-like logic L∼ that by
construction is closely connected to ∼. Because of this, it is easy to show the equivalence =L∼ = ∼
(Theorem 10). Theorem 11 shows that =L≡ implies ∼ and hence also =L∼ . Proposition 14 states
that L≡ is strong enough to simulate L∼, i.e. that any formulae in L∼ can be expressed in L≡.

5.1 The Logic L∼
The syntax of L∼ is defined as follows and the satisfaction relation is given in Figure 13 where a is
an element from the set of labels generated by the ψ group defined in Section 2.2.3.

A,B ::= tt | A ∨B | A ∧B | <a>A

true P |= tt , true for all processes P
disjunction P |= A ∨B , P |= A ∨ P |= B

conjunction P |= A ∧B , P |= A ∧ P |= B

possibility P |= <a>A , ∃P ′ s.t. P a−→ P ′ and P ′ |= A

Figure 13: The satisfaction relation of L∼

A possibility expression e.g. <a>A is satisfied by a process P if it is possible for P , from its
current state, to make an a-labelled transition and reach a new state P ′ satisfying A. Notice that
possibility is defined using the transition rules instead of structural congruence.

We define =L∼ the same way as =L≡ , i.e. P =L∼ Q iff ∀A ∈ L∼ : P |= A ⇐⇒ Q |= A.

Definition 7. A process P is image finite iff for each action a the collection {P ′ | P a−→ P ′} of
processes reachable from P by transition a is finite. A LTS is image finite if each of its states are
image finite.
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Note that although a slot nb•c have infinitely many transitions, in that infinitely many different
processes may enter it, it is still image finite as each entering af a process only leads to one state.
This means that image finite is not the same as finite-state.

5.2 Equivalence Between =L∼ and ∼
Lemma 8. If P =L∼ Q then P ∼ Q for processes P and Q in an image finite labelled transition
systems.

Proof. As in the proof of Theorem 4.1 in [11] we show that the relation R = {(P,Q) | P =L∼ Q}
imposed by =L∼ is a bisimulation, i.e. we show that if P =L∼ Q and P

a−→ P ′ then there exists
Q′ such that Q a−→ Q′ and P ′ =L∼ Q′. Since =L∼ is symmetric it suffices to show that R is a
bisimulation.

Assume for the purpose of reaching a contradiction that Q′ does not exist. Since Q is image finite,
there is only a finite set of possibilities for Q′, say {Q′1, Q′2, .., Q′k} with k ≥ 0 that can be reached
by performing an a-labelled transition from Q. Then, by assumption, we have that P ′ 6=L∼ Q′i for
each Q′i hence there exists a formula Ai such that P ′ |= Ai and Q′i 6|= Ai. As a result, the formula
B = <a>A1 ∧ <a>A2 ∧ .. ∧ <a>Ak is satisfied by P but not by Q and it cannot be the case that
P =L∼ Q.

Lemma 9. If P ∼ Q then P =L∼ Q.

Proof. Detailed proof is given in Section A.3.
We have to show that for two processes P ∼ Q it is also the case that P =L∼ Q. For P =L∼ Q

to hold P and Q must satisfy exactly the same formulae, i.e. if P |= A then Q |= A for all formulae
A which is sufficient since =L∼ is symmetric. In order to show this for all formulae, we do structural
induction on the form of the formula. The inductive hypothesis for the proof is that for two processes
R,S if R ∼ S then R =L∼ S.

Theorem 10. =L∼ and ∼ coincide for image finite labelled transition systems.

Proof. Follows from Lemma 8 and 9.

5.3 Relation Between =L≡ and ∼/=L∼

The logic L≡ can infact simulate all formulae in L∼ which also means that the semantics of L∼ (i.e.
the satisfaction relation) can be expressed in terms of L≡. However, this may not be surprising since
the transition rules are syntax-driven and Theorem 6 shows that =L≡ is as strong as ≡.

Theorem 11. If P =L≡ Q then P ∼ Q.

Proof. Detailed proof is given in Section A.4.
We know from Theorem 6 that =L≡ and ≡ coincide. We use this result and show that for two

processes P ≡ Q, it is also the case that P ∼ Q. For this to hold, P and Q must be able to do
exactly the same transitions and still remain structual congruent, i.e. if P ≡ Q and P

a−→ P ′ then
there exists a Q′ such that Q a−→ Q′ and P ′ ≡ Q′. To show this for all possible transitions we do
induction on the depth of the inference of P a−→ P ′. As the inductive hypothesis we have that for
processes R,S if R ≡ S and R a−→ R′ then S a−→ S′ such that R′ ≡ S′.

Corollary 12. If P =L≡ Q then P =L∼ Q.

Proof. Follows from Theorem 11 and Lemma 9.

Corollary 13. =L≡(∼ and =L≡(=L∼ .

Proof. To prove =L≡(∼ we have that Theorem 11 gives =L≡⊆∼. That it is a proper subset is
shown by processes P = a.a and Q = a ‖ a for which P ∼ Q but P 6=L≡ Q.

For =L≡(=L∼ Corollary 12 gives =L≡⊆=L∼ . For the same P and Q Lemma 9 gives that
P =L∼ Q. As P 6=L≡ Q we get =L≡(=L∼ .
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We now focus on the encoding of formulae from L∼ in terms of formulae from L≡. More precisely
we want a mapping ϕ : L∼ → L≡ such that for any formula A ∈ L∼ we have P |=∼ A iff P |=≡ ϕ(A).
This would allow us to add the possibility connective to our logic and allow us to apply the model
checker for L≡ to L∼.

Proposition 14. There is an encoding ϕ : L∼ → L≡ such that for all A ∈ L∼ we have P |=∼ A if
and only if P |=≡ ϕ(A).

Proof. Detailed proof in Section A.5.
We must show that given any formula A from L∼ there exists a formula A′ from L≡ such that

P |=∼ A iff P |=≡ A′. The proof idea is based on the fact that by knowing that a transition is
possible tells something about the process structure, since the SOS transition rules are syntax-driven.
Similar, by knowing the process structure it is possible to tell which transitions are possible.

Notice that this result gives an alternative proof that =L≡ implies =L∼ and is similar to the
method used for the converse of Theorem 4.1 in [13].

6 Model Checking

We present a model checking algorithm for a decidable sub-logic which asserts the truth of input P ,
A where P is a process description in MR and A is a formula in L≡ . Inspired by the initial design of
model checking algorithm for the Mobile Ambients logic in [2] and the results from [5] our algorithm
requires formula A to be ‖. (composition adjunct) free and process P to be finite-state. In [5] it is
proven that the algorithm for the Mobile Ambients logic cannot be extended to include ‖. as this
would lead to undecidability. While we have no proof that this result will hold for a model checking
algorithm for L≡ this is likely since both calculi and logics are very similar.

A finite-state process can be guaranteed through syntactic restrictions such as disallowing the
use of the replication operator ! (bang) in MR which is the approach taken here. However, in [4] it
is shown that by introducing a type system it is possible to allow (some) replication in processes as
long as they are typable and still achieve finite-state processes. We expect that a similar approach
using a type system is applicable for MR but this is left for future work.

A proof-of-concept implementation of the algorithm has been developed in Ruby and is available at
http://www.cs.aau.dk/˜crt/2006/MR/modelchecker/.

6.1 Prime Product Normal Form

As input, the algorithm requires the process to be converted into a structural equivalent process on
Prime Product Normal Form (PPNF) (see Definition 15), in which a process is presented as a finite
product of prime processes. Although this normal form is required by the algorithm presented here,
this conversion and construction of a suitable AST2 should be provided by a parser.

Definition 15. Process products are on the form:
i∈1..k

∏
Pi , P1 ‖ . . . ‖ Pk ‖ 0.

A prime process is a process on the form given by the basic calculus syntax of Figure 1 such that:

P ::= γα.P ′ | δ . δ′.P ′ | \m.P ′ | ñb•cm | ñbP ′cm | 0

A process P is on PPNF if it does not contain nested composite processes. Thus a process on PPNF
is a product

i∈1..k

∏
Pi where Pi are prime processes and the subprocesses P ′ of Pi are either prime

processes or process products.

As an example a process P = P1 ‖ P2 where P2 = P3 ‖ P4 must be written P = P1 ‖ P3 ‖ P4

where P1,3,4 are prime processes. Thus P does not have nested composite processes.

2Abstract Syntax Tree
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6.2 The Algorithm

The algorithm described in Figure 14 checks that a process P satisfies the closed formula A, this is
done using recursion in a divide and conquer manner. The algorithm depends on the following:

To calculate the result of 3 (sometime) we define the function reachable(P) which returns the
set RP = {P1 . . . Pk} representing all reachable states, in one reduction, of the process P given the
reduction rules from Section 2.2.1 such that if and only if P ↘ Q then Q ≡ Pi for some Pi ∈ RP .

Likewise for the ◊ (somewhere) computation, we define the function sublocation(P) which returns
the set SP = {n1 . . . nk} representing all, possibly nested, slot processes in P .

Finally, for parallel composition we define the function list(P ) such that list(P ) = {0, P1, . . . , Pk} ⇐⇒
P ≡

i∈1..k

∏
Pi and list(P ) = {P} for all prime processes.

Quantification is done over the domainM+ for which we defineM = fn(P )∪fn(A) = {m1, . . . ,mk}∧
m0 6∈ {m1, . . . ,mk}. Thus only relevant strings are considered. The proof in Section A.7 discusses
this further.

The algorithm uses the truth value of the ≡ relation which may in constant time assert the cases:
P ≡ 0, P ≡ λ.P ′, P ≡ ñb•cn′ and P ≡ ñbP ′cn′ .

check(P, tt) , tt

check(P,0) , P ≡ 0
check(P,¬A) , ¬check(P,A)
check(P,A ∨B) , check(P,A) ∨ check(P,B)
check(P, λ.A) , P ≡ λ.P ′ ∧ check(P ′, A)
check(P, m̃b•c) , P ≡ ñb•cn′ where m̃ ⊆ ñ
check(P, m̃bAc) , P ≡ ñbP ′cn′ ∧ check(P ′, A) where m̃ ⊆ ñ
check(P,A@m̃) , check(P ′, A) where P ′ ≡ ñbP cn′ for some ñ such that m̃ ⊆ ñ
check(P,∀x.A) ,

∧
ms∈M+

check(P,A{ms/x}) where |ms| ≤ the number of slots in P

check(P,3A) , check(P,A) ∨
∨

Pi∈RP

check(Pi,3A) where RP = reachable(P )

check(P, ◊A) ,
∨

Pi∈SP

check(Pi, A) where SP = sublocation(P )

check(P,A ‖ B) , let list(P ) = {P0, ..., Pk}
∨
∀I,J

(
check(

∏
i∈I

Pi, A) ∧ check(
∏
j∈J

Pj , B)
)

where I ∪ J = {0..k} ∧ I ∩ J = ∅

Figure 14: The model checking algorithm

6.3 Decidability and Correctness

Termination of the algorithm can be guaranteed since all recursive calls meet the following criteria;
either calls are on subprocesses of the original input guaranteeing a reduction in the input and in-
evitable termination. Alternatively the call explores the state space of the process P which is finite
due to the fact that P is finite-state.

Although this algorithm is decidable it requires P-SPACE. The sublocation() function can be
implemented as a simple search through the process structure, registering any subprocess structural
equivalent to a slot process. The disjoined assertions used in the algorithm for asserting satisfaction
of parallel formulae are also decidable, but asserting all possible subsets of a parallel process with
a composite formulae requires O(2n) assertions, where n is the length of the input. Recursively
exploring the state-space of a process using recursive calls to reachable(P ) has the complexity O(n!).
A discussion of how to manage and reduce this complexity is not within the scope of this project,
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but a simple practical approach, also used in our implementation, is to ensure short circuiting of
disjointed and conjoined assertions.

Lemma 16. check(P,A) = tt if and only if P |= A

Proof. Detailed proof in Section A.7.
The proof for Lemma 16 is by structural induction in the formula A, we prove that the algorithm

computes the correct result (check(P,A) = tt) exactly when P |= A.

7 Related Works

Our approach was influenced by the work of Luca Cardelli and Andrew D. Gorden in [1] along with
the works of Davide Sangiorgi in [13] regarding a logic for the Mobile Ambient calculus [2]. Cardelli
and Gordon propose a logic which is able to express spatial structure as well as time in mobility
models. The work of Sangiorgi shows that the logic allows us to observe the internal structure of
the processes at a very fine-grained detail.

In [4] a type system for Mobile Ambients is developed that allows for a less restricted approach
for having finite-state processes than by removal of the replication construct. [10] introduces a type
system for the Mobile Resources calculus inspired by the type system for Mobile Ambients. It could
be investigated whether this type system could be used for the purpose of extending the model
checking algorithm to typable processes with (some) replication.

The calculus of Higher-order Mobile Embedded Resources (Homer) [9] is a pure (non-linear)
higher-order calculus with mobile computing processes in nested locations. The calculus is defined
such that it has very simple syntax and semantics, which conservatively extend the standard syntax
and semantics of process passing calculi. The nested names as location addresses, as found in
nested name spaces of distributed systems, were introduced in the predecessor of Homer, the Mobile
Resources calculus [6].

8 Conclusions and Future Work

We have created a logic L≡ based on structual congruence and proved that the equivalence im-
posed by this coincides with the equivalence imposed by structual congruence (Theorem 6). To be
able to show the coherence between bisimulation and L≡ we introduce a secondary logic L∼ based
on labelled transition rules. We have shown that the equivalence imposed by L∼ coincides with
bisimulation for image finite labelled transition systems (Theorem 10) and that L≡ can characterize
L∼ . Finally, we present a model checking algorithm and a proof-of-concept implementation for a
decidable fragment of L≡ without composition adjunct and replication.

Future work for L≡ might include extending it with name restriction along the lines of [3, 5].
That particular approach would require the reintroduction of name restriction in the calculus, alpha-
conversion in the structural equivalence relation and the addition of a connective such as r (and
its adjunct �) used to derive the restriction quantifier. Based on the results from [5] this approach
would allow the model checking algorithm to be extended as well without any increase in complexity.
L∼ and the characterization of it in L≡ could be extended to include all connectives found in

Hennessy-Milner-logic [8]; simply adding the complete set of connectives would not effect L∼ co-
herence with bisimularity but would require an extensive extension of the characterization. Also,
it would be interesting to examine if the connectives from L∼ could be added to L≡ as derived
connectives, i.e. what happens when these connectives are mixed.

In [4] it is shown that by introducing a type system it is possible to allow (some) replication
in processes as long as they are typable and still achieve finite-state-processes. We expect that a
similar approach using a type-system could be applicable in MR, to allow the use of replication with
the model checking algorithm.
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Future work might also include the development of a logic for the calculus of Higher-order Mobile
Embedded Resources (Homer) [9], the successor of the Mobile Resources calculus. We suspect that
elements from L≡ could be used in the development of a logic for Homer.
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A Proofs

A.1 Proof for Lemma 4

Lemma 4. If P ≡ Q then P =L≡ Q.

Proof. If it is the case that P ≡ Q, by Definition 3, we must show that for all formulae A ∈ L≡ it is also
the case that P |= A ⇐⇒ Q |= A. We do this by structural induction in the formula A using as inductive
hypothesis that for processes R,S if R ≡ S then R =L≡ S. Assume that P satisfies the formula for the
following cases:

tt : by definition of satisfaction we have Q |= tt trivially.

0 : by definition of satisfaction P ≡ 0 so by definition of structural congruence we get that P = 0. Since
P ≡ Q the same goes for Q and hence Q |= 0.

¬A : by definition of satisfaction we have that P |= ¬A implies ¬(P |= A). Since Q ≡ P the inductive
hypothesis gives that if Q |= A then P |= A; since this is not the case we get ¬(Q |= A) and finally
Q |= ¬A.

A ∨B : by definition of satisfaction P |= A or P |= B. By the inductive hypothesis we get that either Q |= A
or Q |= B which gives that Q |= A ∨B.

m̃bAc : by definition of satisfaction P ≡ ñbP ′cn′ and P ′ |= A for m̃ ⊆ ñ and some n′. Since P ≡ Q the
definition of structural congruence (property E7 in Section 2.1.2) gives that Q ≡ ñbQ′cn′ and that
P ′ ≡ Q′. By the inductive hypothesis Q′ |= A and hence Q |= m̃bAc.

m̃b•c : by definition of satisfaction P ≡ ñb•cn′ for m̃ ⊆ ñ and some n′. Since P ≡ Q the definition of
structural congruence gives that Q ≡ ñb•cn′ and so Q |= m̃b•c.

A1 ‖ A2 : by definition of satisfaction P ≡ P1 ‖ P2 where P1 |= A1 and P2 |= A2. If Q is on the form Q1 ‖ Q2 it
follows by the difinition of structural congruence (E9) that P1 ≡ Q1 and P2 ≡ Q2 and so the inductive
hypothesis gives that Q1 |= A1 and Q2 |= A2 and hence Q |= A1 ‖ A2. If, however, Q is not on that
form (allowed by structural congruence for p ‖ 0 ≡ p) we can first transform Q into a suitable form
using the rules of structural congruence and get the same result.

3A : by definition of satisfaction there exists P ′ such that P −→∗ P ′ where P ′ |= A. Since P ≡ Q we
have by Lemma 11 that there exists Q′ such that Q −→∗ Q′ and P ′ ≡ Q′. By the inductive hypothesis
Q′ |= A and hence Q |= 3A.

A@m̃ : by definition of satisfaction there exists P ′ such that P ′ ≡ ñbP cn′ and P ′ |= A for m̃ ⊆ ñ and some
n′. Since ≡ is a process congruence and hence preserves contexts, we have that P ′ ≡ ñbP cn′ ≡ ñbQcn′

and so there exists Q′ ≡ ñbQcn′ with Q′ ≡ P ′. By the inductive hypothesis we get that Q′ |= A and
so Q |= A@m̃.

A ‖.B : by definition of satisfaction we get that R ‖ P |= B for any process R |= A. By definition of
structural congruence (E6) we have that R ‖ P ≡ R ‖ Q for all R and thus by inductive hypothesis
that R ‖ P |= B implies R ‖ Q |= B. This shows that Q |= A ‖.B.

λ.A : by definition of satisfaction there exists P ′ such that P ≡ λ.P ′ and P ′ |= A. Since P ≡ Q we have
by the definition of structural congruence (E8) that there exists Q′ such that Q ≡ λ.Q′ and P ′ ≡ Q′.
By inductive hypothesis Q′ |= A and so Q |= λ.A.

∀x.A : by definition of satisfaction a process P satisfies ∀x.A iff P satisfies A for all values of the variable x.
Assume for the purpose of reaching a contradiction, that Q 6|= ∀x.A which implies that ∃m.A{m/x} =
Am where Q 6|= Am and P |= Am. However, since P ≡ Q the inductive hypothesis gives that P =L≡ Q
contradicting our assumption.

A.2 Proof for Lemma 5

First we need another Lemma allowing us to concentrate only on the special case where two processes are
obviously not structural congruent. The Lemma shows that the general case holds by applying the rules of
structural equivalence.

Lemma 17. P 6≡ Q if and only if there exists a context C such that P ≡ C[P ′], Q ≡ C[Q′] and P ′ 6≡ Q′

where C is an arbitrary, possibly empty, process context.

Proof. Follows directly from Definition 3 of structural congruence.
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Lemma 5. If P 6≡ Q then P 6=L≡ Q.

Proof. We assume that P 6≡ Q and so, by Definition 3, we show that it is not the case that for all formulae
A′ we have P |= A′ and Q |= A′; i.e. that there exists a formula A such that P |= A and Q 6|= A.

We must show this for all processes and so the proof is by structural induction in the process. As the
inductive hypothesis we use that for processes R,S if R 6≡ S then there exists a formula B such that R |= B
and S 6|= B.

0 : for processes P ≡ 0 and Q 6≡ 0 and by the formula A = 0 we have that P |= A and Q 6|= A.

ñbRcn′ : for P ≡ ñbRcn′ we have that either Q is not a slot or Q ≡ m̃bScm′ . In the first case the formula
A = ñbttc distinguishes P and Q; in the second case we have to examine m̃, m′ and S:

– because of content, i.e. R 6≡ S: by the inductive hypothesis we have that there exists a B such
that R |= B and S 6|= B and hence A = ñbBc.

– because of slot names: if ñ ⊂ m̃ then A = ¬m̃bttc; if ñ ⊃ m̃ then A = ñbttc; or if ñ∩ m̃ = ∅ then
A = ñbttc.

– because of delete name, i.e. n′ 6= m′: since slots have no delete name in the logic we use the ‖.
and 3 operators; for A = \n′.0 ‖.30 we get that P |= A and Q 6|= A since ñbRcn′ ‖ \n′.0 ↘ 0.

ñb•cn′ : similar to the case where P = ñbRcn′ but using A = ñb•c in the case where ñ = m̃.

γα.P ′ : once again we have to consider two cases: either Q is not on the correct form or Q ≡ γα.Q′ but
P ′ 6≡ Q′. For the first case we choose A = γα.tt. For the second, the inductive hypothesis gives that
there exists a B such that P ′ |= B and Q′ 6|= B; in this case we find satisfaction in A = γα.B.

δ . δ′.P ′ : similar to the case where P = γα.P ′ but using δ . δ′ for A instead.

\m.P ′ : similar to the case for P = γα.P ′ but using \m for A instead.

P1 ‖ P2 : we assume that P ≡ P1 ‖ P2 and consider Q 6≡ P . By the rules of structural congruence this implies
that either 1) there does not exists Q1, Q2 such that Q ≡ Q1 ‖ Q2 (i.e. Q does not have the correct
syntax) or 2) there exists Q1, Q2 such that Q ≡ Q1 ‖ Q2 but P1 6≡ Q1 or P2 6≡ Q2.

– in case of 1) the formula A = tt ‖ tt is enough.
– in case of 2) the inductive hypothesis gives that there exists A1 and A2 where P1 |= A1∧P2 |= A2

but Q1 6|= A1 ∨Q2 6|= A2, in which case P |= A but Q 6|= A where A = A1 ‖ A2.

!R : we assume that P ≡ !R and Q 6≡ P . Since the logic does not have a connective to match ! directly
we need to consider the following cases: 1) Q is a slot or a prefix or 2) there exists Q1, Q2 such that
Q ≡ Q1 ‖ Q2 but Q1 6≡ R or Q2 6≡ R or 3) Q ≡ R [‖ R]k for some constant k or 4) Q ≡ !S but S 6≡ R.

– case 1) and 2) are trivial
– in case 3) there exists a k such that a formula A can be constructed to require more parallel

processes than the number contained in Q: A = ¬0 [‖ ¬0]k.
– in case 4) by the inductive hypothesis there exists a formula B such that R |= B and S 6|= B.

Hence P |= A and Q 6|= A for A = B ‖ tt.

A.3 Proof for Lemma 9

Lemma 9. If P ∼ Q then P =L∼ Q.

Proof. We assume that P ∼ Q and show that then it holds that P =L∼ Q. For P =L∼ Q to hold, P and
Q must satisfy exactly the same formula, i.e. if P |= A then Q |= A for all formula A, which is sufficient
since =L∼ is symmetric. In order to show this for all formulas we do structural induction on the form of the
formula, having as inductive hypothesis that for two processes R,S if R ∼ S then R =L∼ S.

tt : Q |= tt trivially.

A ∨B : by definition of satisfaction this implies that either P |= A or P |= B. If P |= A the inductive
hypothesis gives that Q |= A and similar if P |= B then Q |= B. So either Q |= A or Q |= B and
hence Q |= A ∨B.

A ∧B : by definition of satisfaction this implies that P |= A and P |= B. By the inductive hypothesis we
get that Q |= A and Q |= B and hence Q |= A ∧B.

<a>A : by definition of satisfaction P |= <a>A implies that there exists P ′ such that P
a−→ P ′ and P ′ |= A.

By assumption we have that P ∼ Q and so there exists Q′ such that Q
a−→ Q′ and P ′ ∼ Q′. By the

inductive hypothesis we get that Q′ |= A and hence Q |= <a>A.
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A.4 Proof for Lemma 11

Lemma 11. If P =L≡ Q then P ∼ Q.

The proof is inspired by a similar result (Proposition 5.2) from [12]. In the proof a is an element from
the set of actions generated by the ψ.

Proof. We assume P =L≡ Q (and so P ≡ Q follows from Theorem 6) and show that it is also the case that
P ∼ Q. For this to hold, P and Q must be able to do exactly the same transitions and still remain structual
congruent, i.e. if P ≡ Q and P

a−→ P ′ then there exists a Q′ such that Q
a−→ Q′ and P ′ ≡ Q′.

To show this for all possible transitions we do induction on the depth of the inference of P
a−→ P ′. It is

clearly enough to prove the result in the special case that the congruence P ≡ Q is due to a single application
of a structural congruence rule; the general case follows just by iterating the special case.

As the inductive hypothesis we have that for processes R,S if R ≡ S and R
a−→ R′ then S

a−→ S′ such
that R′ ≡ S′. As the proofs are very simple and the result well-known, only partial proofs for the sync, par
and sym transition rules are shown.

sync : we have P = a.P1 ‖ a.P2, P
τ−→ P ′ and P ′ = P1 ‖ P2. One possibility for Q is by use of rule E2

(commutativity) so that Q = a.P2 ‖ a.P1. In this case the sym rule gives that Q
τ−→ Q′ and we have

that P ′ ≡ Q′.

par : we have P = P1 ‖ 0, P
a−→ P ′ and P ′ = P ′1 ‖ 0. We can use rule E1 and have Q = P1. By the

inductive hypothesis we get that P1
a−→ P ′1 and as a result Q

a−→ Q′ and Q′ ≡ P ′.

sym : we have P = P1 ‖ P2, P
a−→ P ′ and P ′ = P ′1 ‖ P2. We can have Q = P2 ‖ P1 and so the sym rule

gives that Q
a−→ Q′ and Q′ ≡ P ′.

A.5 Encoding of L∼ in L≡
We look for a mapping ϕ : L∼ → L≡ such that given a formula A ∈ L∼ we have P |=∼ A if and only if
P |=≡ ϕ(A). The idea is to utilize that the SOS transition rules are syntax-driven and hence that if a process
P is able to do a transition it reveals information about the structure of P .

To prove that ϕ(·) is correct we would need to consider two directions. For the first direction we assume
that P |=∼ A and show that this enables us to create a set of minimum structural requirements needed for
P to perform the required transitions and that these requirements are expressed by the formula ϕ(A). For
the second direction we show that the structural requirements expressed in ϕ(A) is enough to guarantee
that for any process P such that P |=≡ ϕ(A) we have that P can perform the required transition, i.e. that
P |=∼ A.

As noted, the algorithm to perform the mapping must first collect the structural requirements imposed
by satisfying a formula A ∈ L∼ and based on these requirements it must generate a formula ϕ(A). In
Section A.5.1 we discuss the requirements imposed by a single transition and how these requirements are
expressed in L≡. How these requirements are combined to generate the complete formula ϕ(A) are done
in two sections: in Section A.5.2 we give an algorithm for simple formulae3 and in Section A.5.3 we show
example translations for complex formulae. We consider the algorithm for simple formulae and the provided
translations enough to argue the existence of a full algorithm. However, since we do not provide a full
algorithm we do not prove any of the directions mentioned above.

A.5.1 Requirements

The requirements revealed by being able to perform a single transition are summarized in Figure 15. The
first column contains the name of the transition in L∼ and the second contains the syntax. The third column
gives the structural requirements imposed by observing the transition and is dictated by the transition rules
from Section 2.2.2. The macros defined in Figure 16 are used to improve readability.

A.5.2 Mapping of Simple Formulae

A formula such as <a><b><c>tt is satisfied by several different non-structural congruent processes therefore the
function mapsimple shown in Algorithm 1 returns a set of all possible cases (up to ≡). If these cases are
or -ed together we have an implementation of ϕ(·) for simple formulae.

The first parameter for mapsimple is a logical formula from L∼ and the second parameter is a parallel
composition of variables corresponding to each term in the formula. For mapsimple(<a><b>tt, A1 ‖ A2) we
have two terms in the formula, hence also two parallel variables. The result is therefore {(a.b.tt ‖ tt), (a.tt ‖
b.tt)} and ϕ(<a><b>tt) = (a.b.tt ‖ tt) ∨ (a.tt ‖ b.tt).

3We say that a formula is simple when it only consists of possibility terms of actions not inside slots.
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Label L∼ L≡
delete <\m> delete(m)
action <γα> action(γα)
enter <(P ) . δ> enter(δ)
move <δ1 . δ2> move(δ1, δ2)
exit <(Cγ)δ′ . (Dδ)> exit(δ′)

coaction <δα> coaction(δα)
give <.δ(D)δ> give(δ)

comove <δ1 . δ2> comove(δ1, δ2)
take <δ . (P )> take(δ)
tau <τ> ◊A, where A =

∃δ1, δ2 . comove(δ1, δ2) ∧move(δ1, δ2)
∨ ∃δ . give(δ) ∧ enter(δ)
∨ ∃δ . take(δ) ∧ exit(δ)
∨ ∃m . codelete(m) ∧ delete(m)
∨ ∃a . coaction(a) ∧ action(a) ∨ ∃δ . coaction(δa) ∧ δbaction(a)c

Figure 15: Requirements on the structure of a process imposed by the possibility of performing a
transition

Macro name Encoding in L≡
delete(m) \m.tt

codelete(α) \α.0 ‖.30
move(δ1, δ2) δ1 . δ2.tt
action(γα) γα.tt

coaction(δα) δbα.ttc
fullslot(δ) δbttc

emptyslot(δ) δb•c
exit(δ) fullslot(δ)
enter(δ) emptyslot(δ)
give(δ) ∃δ′ . exit(δ′) ∧move(δ′, δ)

comove(δ1, δ2) exit(δ1) ∧ enter(δ2)
take(δ) ∃δ′ . move(δ, δ′) ∧ enter(δ′)

Figure 16: Macros for process structure requirements

The mapsimple function makes use of other functions, but since they are trivial no formal definition is
needed:

head
`
<a><b><c>tt

´
= <a>

tail
`
<a><b><c>tt

´
= <b><c>tt

head returns the first term in the formula and tail returns all but the first term in the formula.

expand
`
<a>, A1, A1 ‖ A2 ‖ A3

´
= a.A′1 ‖ A2 ‖ A3

expand replaces A1 in formula A1 ‖ A2 ‖ A3 with the formula that would satisfy <a>.

A.5.3 Mapping of Complex Formulae

We give manual example mappings for complex formulae but omit examples for delete, action and move as
they can only be observed if located at the root of the slot hierarchy, hence they are trivial.

In the following examples the first column shows the formula from L∼ written from top to bottom. The
second column states the requirement each connective in the formula imposes on the process. Sometimes a
requirement may be satisfied by a previous term in the formula which has rearranged resources. E.g. in the
case of moves; a n . m term may allow later requirements of the contents of slot m to be redirected to the
original contents of n. We denote such shifts in requirements as nb•c 7→ mb•c. The third column (to the
right of the line) shows the resulting formula in L≡ with each line or -ed together.

coaction <δα>: when these actions are observed it is because there exists a process inside the slot located
at δ willing to perform action α. In the first example we have the formula <na><mb> and we see that the
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Algorithm 1 mapsimple(A∼, formula)
term← head(A∼)
if term = tt then

replace all variables in formula with tt and return
else

for each variable in formula do
add mapsimple

(
tail(A∼), expand(term, variable, formula)

)
to list

end for
remove all duplicates up to ≡ from list
return list

end if

first and second connective have requirement nbac and mbbc respectively. The resulting formula in L≡ is
nba ‖ ttc ‖ mbb ‖ ttc ‖ tt.

A ∈ L∼
<na> nbac
<mb> mbbc
tt

ϕ(A) ∈ L≡
nba ‖ ttc ‖ mbb ‖ ttc ‖ tt

The next example is similar except that now there are two requirements for slot n. As seen this yields
three different process configurations.

A ∈ L∼
<na> nbac
<nb> nbbc
tt

ϕ(A) ∈ L≡
nba ‖ ttc ‖ nbb ‖ ttc ‖ tt

nba.b ‖ ttc ‖ tt
nba ‖ b ‖ ttc ‖ tt

enter <(P ) . δ>: with the enter examples we see how requirements can be passed on: the b moved into
slot m by <(b) . m> could be the b satisfying the requirement imposed on m. We denote this mbbc 7→ mb•c
since m has to be empty for the enter to take place.

A ∈ L∼
<na> nbac
<(b) . m> mb•c
<mb> mbbc 7→ mb•c
tt

ϕ(A) ∈ L≡
nba ‖ ttc ‖ mbb ‖ ttc ‖ mb•c ‖ tt

nba ‖ ttc ‖ mb•c ‖ tt

comove <δ1 . δ2>: here we have that the requirement on slot n m can be passed on to slot a m because
<a . n> could move a slot m from a into n satisfying the requirement imposed by <b . nm>.

A ∈ L∼
<a . n> abttc, nb•c
<b . nm> bbttc, nbmb•cc 7→ abmb•cc
tt

ϕ(A) ∈ L≡
abttc ‖ nb•c ‖ bbttc ‖ nbmb•cc ‖ tt

abmb•cc ‖ nb•c ‖ bbttc ‖ tt

In the next example the content of slot n is moved into a slot m, so the requirement put on m by <mb>
can be passed on to n, yielding many different cases.

A ∈ L∼
<na> nbac
<n . m> nbttc,mb•c
<mb> mbbc 7→ nbbc
tt

ϕ(A) ∈ L≡
nbac ‖ mb•c ‖ mbbc ‖ tt

nba.bc ‖ mb•c ‖ tt
nba.bc ‖ mb•c ‖ mbbc ‖ tt

nba ‖ bc ‖ mb•c ‖ tt
nba ‖ bc ‖ mb•c ‖ mbbc ‖ tt

nbac ‖ nbbc ‖ mb•c ‖ tt
nbac ‖ nbbc ‖ mb•c ‖ mbbc ‖ tt

exit <δ.>: here nbttc 7→ nb•c denotes that slot n could be empty after <n.>; if this is the case then
requirement nbbc has to be satisfied by another slot n.
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A ∈ L∼
<na> nbac
<n.> nbttc 7→ nb•c
<nb> nbbc
tt

ϕ(A) ∈ L≡
nbac ‖ nbbc ‖ tt

nba.bc ‖ nbttc ‖ tt
nba ‖ bc ‖ nbttc ‖ tt

take <δ . (P )>: a take transition is possible when there exists a move and an enter and so we “unfold”
<δ . (P )> to <δ . δ′><(P ) . δ′>:

A ∈ L∼
<ab . δ> ab . δ
<(a.b) . δ> δb•c
<ca> cbac 7→ δbac
tt

ϕ(A) ∈ L≡
∃∗δ.cbac ‖ ab . δ ‖ δb•c ‖ tt if δ = c

ab . c ‖ cb•c ‖ tt if δ 6= c
cbac ‖ ab . c ‖ cb•c ‖ tt if δ 6= c

give <.δ>: a give transition is possible when there exists an exit and a move and so we “unfold” <.δ> to
<δ′.><δ′ . δ>.

A ∈ L∼
<δ′.> δ′bttc
<δ′ . ab> δ′ . ab
<cd> cbdc
tt

ϕ(A) ∈ L≡
cbttc ‖ cbdc ‖ c . ab ‖ tt if δ = c

δbttc ‖ cbdc ‖ δ . ab ‖ tt if δ 6= c

A ∈ L∼
<cd> cbdc
<δ′.> δ′bttc
<δ′ . ab> δ′ . ab
tt

ϕ(A) ∈ L≡
cbdc ‖ c . ab ‖ tt if δ = c

cbdc ‖ δbttc ‖ δ . ab ‖ tt if δ 6= c

or A ∨B: because of the nature of or not all requirements have to be satisfied. This is shown in the case
of <b>tt ∨ <c>tt where only one of them are necessary; again we denote this b 7→ c.

A ∈ L∼
<a> a
(<b>tt ∨ <c>tt) b 7→ c

ϕ(A) ∈ L≡
a.(b ‖ c) ‖ tt

a.b ‖ tt
a.c ‖ tt

a ‖ b ‖ tt
a ‖ c ‖ tt

and A ∧B: in and all requirements must be satisfied and so <b>tt ∧ <c>tt requires both a b and a c.

A ∈ L∼
<a> a
(<b>tt ∧ <c>tt) b, c

ϕ(A) ∈ L≡
a.(b ‖ c) ‖ tt
a ‖ b ‖ c ‖ tt
a.b ‖ c ‖ tt
a.c ‖ b ‖ tt

A.6 Example of three-way synchronization

The following shows an example deriviation of a three-way synchronization.

fbac f.<a>−−−→ fb•c
exit

ebfbacc ef.<a>−−−−→ ebfb•cc
nesting

ef . cd
ef.cd−−−−→ 0

prefix

ebfbacc ‖ ef . cd <a>.cd−−−−→ ebfb•cc
give

db•c (a).d−−−→ dbac
enter

cbdb•cc (a).cd−−−−→ cbdbacc
nesting

ebfbacc ‖ ef . cd ‖ cbdb•cc τ−→ ebfb•cc ‖ cbdbacc
sync
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A.7 Proof for Modelchecking Algorithm

Lemma 16 check(P,A) = tt if and only if P |= A

Proof. By structural induction in the formula A we prove that the algorithm computes the correct result
such that if P |= A exactly then check(P,A) = tt, which is our inductive hypothesis.

Base:

A = tt then P |= A and check(P,A) = tt.
A = 0 and P |= A then check(P,A) = tt Because P ≡ 0.
A = ñb•c and P |= A then check(P,A) = tt Because P ≡ ñb•cn′ .

Inductive step: For each remaining connective in L≡ we assume the correct behaviour of check(P,A)
and show that check(P,A′) where A′ is an extention of A by exactly one connective is computed correctly:

case: A′ = A1 ‖ A2 and P |= A′ then by definition ∃P1, P2 such that P ≡ P1 ‖ P2 and P1 |= A1∧P2 |= A2.

Using that R ‖ S ≡
Y

i∈1..k

Pi iff ∃I, J where I ∪ J = {0..k} ∧ I ∩ J = ∅ such that R ≡
Y
i∈I

Pi ∧ S ≡
Y
j∈J

Pj

check(P,A1 ‖ A2) will construct and return the disjointed result of R |= A1 ∧ S |= A2 for all possible R and
S. Thus check(P,A1 ‖ A2) = tt if and only if P |= A1 ‖ A2.

case: A′ = ∀x.A and P |= A′ then by definition P |= A{m/x} ∀m ∈ N+ ∪ A. check(P, ∀x.A) imple-
ments this behavior asserting the conjunction of iterative replacement of the variable x with ms ∈ M+,
where M = ({m1, . . . ,mk} = fn(P) ∪ fn(A) and m0 6∈ {m1, . . . ,m2}) for ms where |ms| ≤ number of slots
in P . This is justified because replacement of x with any two names z, y where z 6= y ∧ z, y 6∈ fn(P) ∪ fn(A),
will yield exactly the same result, since neither may coescale with pre-existing names in the expressions, we
need only to test one (m0). Furthermore strings longer than the number of slots in P will not coescale with
anything, thus we need not test these, again the pressence of m0 ensures we test atleast one string which
does not exist. Thus check(P, ∀x.A) will return tt exactly when P |= ∀x.A.

case: A′ = 3A and P |= A′ then by definition there exists a P ′ s.t. P ↘∗ P
′ and P ′ |= A. check(P,3A)

will assert the truth of P satisfying A at the current level in P’s “tree” of possible reductions if this is not
the case it will recursively call check(P ′′,3A) for all possible P ′′, reachable in one reduction as defined by
the reduction rules. Thus check(P,3A) must reach a call where P ′′ = P ′ which by definition satisfies A.

case: A′ = ◊A and P |= A′ then by definition there exists a P ′ s.t. P ↓∗ P ′ and P ′ |= A. check(P, ◊A) will
compute this by identifying the set Sp containing all sublocations of P which must include P ′. check(P, ◊A)
will then return the disjointed answer of each recursive call to check(R,A) ∀R ∈ Sp. The call to check(R,A)
where R = P ′ will eventually return true yielding check(P, ◊A) = tt.

the remaining cases are trivially shown and therefore omitted.
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